These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34517224)

  • 21. Stable Associations Masked by Temporal Variability in the Marine Copepod Microbiome.
    Moisander PH; Sexton AD; Daley MC
    PLoS One; 2015; 10(9):e0138967. PubMed ID: 26393930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring of genotoxicity in marine zooplankton induced by toxic metals in Ennore estuary, Southeast coast of India.
    Goswami P; Thirunavukkarasu S; Godhantaraman N; Munuswamy N
    Mar Pollut Bull; 2014 Nov; 88(1-2):70-80. PubMed ID: 25287225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of ocean acidification on copepods.
    Wang M; Jeong CB; Lee YH; Lee JS
    Aquat Toxicol; 2018 Mar; 196():17-24. PubMed ID: 29324394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of ocean acidification on life parameters and antioxidant system in the marine copepod Tigriopus japonicus.
    Lee YH; Kang HM; Kim MS; Wang M; Kim JH; Jeong CB; Lee JS
    Aquat Toxicol; 2019 Jul; 212():186-193. PubMed ID: 31129414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term effects of elevated CO₂ and temperature on the Arctic calanoid copepods Calanus glacialis and C. hyperboreus.
    Hildebrandt N; Niehoff B; Sartoris FJ
    Mar Pollut Bull; 2014 Mar; 80(1-2):59-70. PubMed ID: 24529340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ocean acidification causes fundamental changes in the cellular metabolism of the Arctic copepod Calanus glacialis as detected by metabolomic analysis.
    Thor P; Vermandele F; Bailey A; Guscelli E; Loubet-Sartrou L; Dupont S; Calosi P
    Sci Rep; 2022 Dec; 12(1):22223. PubMed ID: 36564436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative stress and antioxidant defence responses in two marine copepods in a high CO
    Engström-Öst J; Kanerva M; Vuori K; Riebesell U; Spisla C; Glippa O
    Sci Total Environ; 2020 Nov; 745():140600. PubMed ID: 32717595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impacts of pharmaceutical drugs under ocean acidification: New data on single and combined long-term effects of carbamazepine on Scrobicularia plana.
    Freitas R; Almeida Â; Calisto V; Velez C; Moreira A; Schneider RJ; Esteves VI; Wrona FJ; Figueira E; Soares AMVM
    Sci Total Environ; 2016 Jan; 541():977-985. PubMed ID: 26473700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods.
    Pascal PY; Fleeger JW; Galvez F; Carman KR
    Mar Pollut Bull; 2010 Dec; 60(12):2201-8. PubMed ID: 20875652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of ocean acidification on the nutritional quality of marine phytoplankton for copepod reproduction.
    Meyers MT; Cochlan WP; Carpenter EJ; Kimmerer WJ
    PLoS One; 2019; 14(5):e0217047. PubMed ID: 31107897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ocean Acidification Affects the Phyto-Zoo Plankton Trophic Transfer Efficiency.
    Cripps G; Flynn KJ; Lindeque PK
    PLoS One; 2016; 11(4):e0151739. PubMed ID: 27082737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of elevated CO2 on the reproduction of two calanoid copepods.
    McConville K; Halsband C; Fileman ES; Somerfield PJ; Findlay HS; Spicer JI
    Mar Pollut Bull; 2013 Aug; 73(2):428-34. PubMed ID: 23490345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ingestion and impact of microplastics on arctic Calanus copepods.
    Rodríguez-Torres R; Almeda R; Kristiansen M; Rist S; Winding MS; Nielsen TG
    Aquat Toxicol; 2020 Nov; 228():105631. PubMed ID: 32992089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Delayed effects of pyrene exposure during overwintering on the Arctic copepod Calanus hyperboreus.
    Toxværd K; Dinh KV; Henriksen O; Hjorth M; Nielsen TG
    Aquat Toxicol; 2019 Dec; 217():105332. PubMed ID: 31698182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Response of microcosm zooplankton to acidification].
    Kurbatova SA
    Izv Akad Nauk Ser Biol; 2005; (1):100-8. PubMed ID: 15768639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of acute silver toxicity in the euryhaline copepod Acartia tonsa.
    Pedroso MS; Pinho GL; Rodrigues SC; Bianchini A
    Aquat Toxicol; 2007 May; 82(3):173-80. PubMed ID: 17374407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contrasting physiological responses to future ocean acidification among Arctic copepod populations.
    Thor P; Bailey A; Dupont S; Calosi P; Søreide JE; De Wit P; Guscelli E; Loubet-Sartrou L; Deichmann IM; Candee MM; Svensen C; King AL; Bellerby RGJ
    Glob Chang Biol; 2018 Jan; 24(1):e365-e377. PubMed ID: 28816385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global Proteome Profiling of a Marine Copepod and the Mitigating Effect of Ocean Acidification on Mercury Toxicity after Multigenerational Exposure.
    Wang M; Lee JS; Li Y
    Environ Sci Technol; 2017 May; 51(10):5820-5831. PubMed ID: 28414453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial diversity associated with copepods in the North Atlantic subtropical gyre.
    Shoemaker KM; Moisander PH
    FEMS Microbiol Ecol; 2015 Jul; 91(7):. PubMed ID: 26077986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA damage and oxidative stress responses of mussels Mytilus galloprovincialis to paralytic shellfish toxins under warming and acidification conditions - Elucidation on the organ-specificity.
    Braga AC; Pereira V; Marçal R; Marques A; Guilherme S; Costa PR; Pacheco M
    Aquat Toxicol; 2020 Nov; 228():105619. PubMed ID: 32937230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.