These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34517358)

  • 1. EEG miniaturization limits for stimulus decoding with EEG sensor networks.
    Mundanad Narayanan A; Zink R; Bertrand A
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34517358
    [No Abstract]   [Full Text] [Related]  

  • 2. Analysis of Miniaturization Effects and Channel Selection Strategies for EEG Sensor Networks With Application to Auditory Attention Detection.
    Narayanan AM; Bertrand A
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):234-244. PubMed ID: 30998455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of miniaturization and galvanic separation of EEG sensor devices in an auditory attention detection task.
    Narayanan AM; Bertrand AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():77-80. PubMed ID: 30440345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards decoding selective attention through cochlear implant electrodes as sensors in subjects with contralateral acoustic hearing.
    Aldag N; Büchner A; Lenarz T; Nogueira W
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35062007
    [No Abstract]   [Full Text] [Related]  

  • 5. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensor selection and miniaturization limits for detection of interictal epileptiform discharges with wearable EEG.
    Dan J; Foged MT; Vandendriessche B; Van Paesschen W; Bertrand A
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36630712
    [No Abstract]   [Full Text] [Related]  

  • 7. Removal of eye blink artifacts in wireless EEG sensor networks using reduced-bandwidth canonical correlation analysis.
    Somers B; Bertrand A
    J Neural Eng; 2016 Dec; 13(6):066008. PubMed ID: 27739407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory Steady-State Responses Across Chirp Repetition Rates For Ear-EEG And Scalp EEG.
    Christensen CB; Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1376-1379. PubMed ID: 30440648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturized electroencephalographic scalp electrode for optimal wearing comfort.
    Nikulin VV; Kegeles J; Curio G
    Clin Neurophysiol; 2010 Jul; 121(7):1007-14. PubMed ID: 20227914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG-based auditory attention decoding using speech-level-based segmented computational models.
    Wang L; Wu EX; Chen F
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33957606
    [No Abstract]   [Full Text] [Related]  

  • 11. Ear-EEG compares well to cap-EEG in recording auditory ERPs: a quantification of signal loss.
    Meiser A; Bleichner MG
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35316801
    [No Abstract]   [Full Text] [Related]  

  • 12. Optimal Versus Approximate Channel Selection Methods for EEG Decoding With Application to Topology-Constrained Neuro-Sensor Networks.
    Narayanan AM; Patrinos P; Bertrand A
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():92-102. PubMed ID: 33141674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast EEG-Based Decoding Of The Directional Focus Of Auditory Attention Using Common Spatial Patterns.
    Geirnaert S; Francart T; Bertrand A
    IEEE Trans Biomed Eng; 2021 May; 68(5):1557-1568. PubMed ID: 33095706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A capacitive, biocompatible and adhesive electrode for long-term and cap-free monitoring of EEG signals.
    Lee SM; Kim JH; Byeon HJ; Choi YY; Park KS; Lee SH
    J Neural Eng; 2013 Jun; 10(3):036006. PubMed ID: 23574793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding selective auditory attention with EEG using a transformer model.
    Xu Z; Bai Y; Zhao R; Hu H; Ni G; Ming D
    Methods; 2022 Aug; 204():410-417. PubMed ID: 35447360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of directional sound processing and listener's motivation on EEG responses to continuous noisy speech: Do normal-hearing and aided hearing-impaired listeners differ?
    Mirkovic B; Debener S; Schmidt J; Jaeger M; Neher T
    Hear Res; 2019 Jun; 377():260-270. PubMed ID: 31003037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural tracking to go: auditory attention decoding and saliency detection with mobile EEG.
    Straetmans L; Holtze B; Debener S; Jaeger M; Mirkovic B
    J Neural Eng; 2022 Jan; 18(6):. PubMed ID: 34902846
    [No Abstract]   [Full Text] [Related]  

  • 18. Congruent audiovisual speech enhances auditory attention decoding with EEG.
    Fu Z; Wu X; Chen J
    J Neural Eng; 2019 Nov; 16(6):066033. PubMed ID: 31505476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Two-Talker Attention Decoding from EEG with Nonlinear Neural Networks and Linear Methods.
    Ciccarelli G; Nolan M; Perricone J; Calamia PT; Haro S; O'Sullivan J; Mesgarani N; Quatieri TF; Smalt CJ
    Sci Rep; 2019 Aug; 9(1):11538. PubMed ID: 31395905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Algorithm to find high density EEG scalp coordinates and analysis of their correspondence to structural and functional regions of the brain.
    Giacometti P; Perdue KL; Diamond SG
    J Neurosci Methods; 2014 May; 229():84-96. PubMed ID: 24769168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.