These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 34517477)
1. Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition. Madanu R; Rahman F; Abbod MF; Fan SZ; Shieh JS Math Biosci Eng; 2021 Jun; 18(5):5047-5068. PubMed ID: 34517477 [TBL] [Abstract][Full Text] [Related]
2. SQI-DOANet: electroencephalogram-based deep neural network for estimating signal quality index and depth of anaesthesia. Yu R; Zhou Z; Xu M; Gao M; Zhu M; Wu S; Gao X; Bin G J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 39029477 [No Abstract] [Full Text] [Related]
3. GPGPU-aided ensemble empirical-mode decomposition for EEG analysis during anesthesia. Chen D; Li D; Xiong M; Bao H; Li X IEEE Trans Inf Technol Biomed; 2010 Nov; 14(6):1417-27. PubMed ID: 20813649 [TBL] [Abstract][Full Text] [Related]
4. EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery. Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS Med Biol Eng Comput; 2017 Aug; 55(8):1435-1450. PubMed ID: 27995430 [TBL] [Abstract][Full Text] [Related]
5. Deep Neural Network-Based Empirical Mode Decomposition for Motor Imagery EEG Classification. Yu H; Baek S; Lee J; Sohn I; Hwang B; Park C IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3647-3656. PubMed ID: 39037874 [TBL] [Abstract][Full Text] [Related]
6. Epileptic seizure classifications using empirical mode decomposition and its derivative. Karabiber Cura O; Kocaaslan Atli S; Türe HS; Akan A Biomed Eng Online; 2020 Feb; 19(1):10. PubMed ID: 32059668 [TBL] [Abstract][Full Text] [Related]
7. Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience. Jiang GJ; Fan SZ; Abbod MF; Huang HH; Lan JY; Tsai FF; Chang HC; Yang YW; Chuang FL; Chiu YF; Jen KK; Wu JF; Shieh JS Biomed Res Int; 2015; 2015():343478. PubMed ID: 25738152 [TBL] [Abstract][Full Text] [Related]
8. A Combinatorial Deep Learning Structure for Precise Depth of Anesthesia Estimation From EEG Signals. Afshar S; Boostani R; Sanei S IEEE J Biomed Health Inform; 2021 Sep; 25(9):3408-3415. PubMed ID: 33760743 [TBL] [Abstract][Full Text] [Related]
9. Classification of epileptic EEG recordings using signal transforms and convolutional neural networks. San-Segundo R; Gil-Martín M; D'Haro-Enríquez LF; Pardo JM Comput Biol Med; 2019 Jun; 109():148-158. PubMed ID: 31055181 [TBL] [Abstract][Full Text] [Related]
11. Detection of Alzheimer's Dementia by Using Signal Decomposition and Machine Learning Methods. Cura OK; Akan A; Yilmaz GC; Ture HS Int J Neural Syst; 2022 Sep; 32(9):2250042. PubMed ID: 35946945 [TBL] [Abstract][Full Text] [Related]
12. Improved spectrum analysis in EEG for measure of depth of anesthesia based on phase-rectified signal averaging. Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS Physiol Meas; 2017 Feb; 38(2):116-138. PubMed ID: 28033111 [TBL] [Abstract][Full Text] [Related]
13. Exploring the potential of pretrained CNNs and time-frequency methods for accurate epileptic EEG classification: a comparative study. Jamil M; Aziz MZ; Yu X Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38599183 [TBL] [Abstract][Full Text] [Related]
14. Subject-Independent Emotion Recognition of EEG Signals Based on Dynamic Empirical Convolutional Neural Network. Liu S; Wang X; Zhao L; Zhao J; Xin Q; Wang SH IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1710-1721. PubMed ID: 32833640 [TBL] [Abstract][Full Text] [Related]
15. EMDLAB: A toolbox for analysis of single-trial EEG dynamics using empirical mode decomposition. Al-Subari K; Al-Baddai S; Tomé AM; Goldhacker M; Faltermeier R; Lang EW J Neurosci Methods; 2015 Sep; 253():193-205. PubMed ID: 26162614 [TBL] [Abstract][Full Text] [Related]
16. EEG Signals Analysis Using Multiscale Entropy for Depth of Anesthesia Monitoring during Surgery through Artificial Neural Networks. Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS Comput Math Methods Med; 2015; 2015():232381. PubMed ID: 26491464 [TBL] [Abstract][Full Text] [Related]
17. Classifying Routine Clinical Electroencephalograms With Multivariate Iterative Filtering and Convolutional Neural Networks. Paliwal V; Das K; Doesburg SM; Medvedev G; Xi P; Ribary U; Pachori RB; Vakorin VA IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2038-2048. PubMed ID: 38768007 [TBL] [Abstract][Full Text] [Related]
18. Portable brain-computer interface based on novel convolutional neural network. Zhang Y; Zhang X; Sun H; Fan Z; Zhong X Comput Biol Med; 2019 Apr; 107():248-256. PubMed ID: 30856388 [TBL] [Abstract][Full Text] [Related]
19. Estimating the Depth of Anesthesia from EEG Signals Based on a Deep Residual Shrinkage Network. Shi M; Huang Z; Xiao G; Xu B; Ren Q; Zhao H Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679805 [TBL] [Abstract][Full Text] [Related]
20. Localization of Active Brain Sources From EEG Signals Using Empirical Mode Decomposition: A Comparative Study. Muñoz-Gutiérrez PA; Giraldo E; Bueno-López M; Molinas M Front Integr Neurosci; 2018; 12():55. PubMed ID: 30450041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]