These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34517510)

  • 21. Application of morphological bit planes in retinal blood vessel extraction.
    Fraz MM; Basit A; Barman SA
    J Digit Imaging; 2013 Apr; 26(2):274-86. PubMed ID: 22832895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Subimage Classification.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE J Biomed Health Inform; 2015 May; 19(3):1118-28. PubMed ID: 25014980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frangi based multi-scale level sets for retinal vascular segmentation.
    Yang J; Huang M; Fu J; Lou C; Feng C
    Comput Methods Programs Biomed; 2020 Dec; 197():105752. PubMed ID: 32971487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images.
    Christodoulidis A; Hurtut T; Tahar HB; Cheriet F
    Comput Med Imaging Graph; 2016 Sep; 52():28-43. PubMed ID: 27341026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retina Image Vessel Segmentation Using a Hybrid CGLI Level Set Method.
    Chen G; Chen M; Li J; Zhang E
    Biomed Res Int; 2017; 2017():1263056. PubMed ID: 28840122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-proportion channel ensemble model for retinal vessel segmentation.
    Tang P; Liang Q; Yan X; Zhang D; Coppola G; Sun W
    Comput Biol Med; 2019 Aug; 111():103352. PubMed ID: 31301636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep multi-instance heatmap regression for the detection of retinal vessel crossings and bifurcations in eye fundus images.
    Hervella ÁS; Rouco J; Novo J; Penedo MG; Ortega M
    Comput Methods Programs Biomed; 2020 Apr; 186():105201. PubMed ID: 31783244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blood Vessel Extraction in Color Retinal Fundus Images with Enhancement Filtering and Unsupervised Classification.
    Yavuz Z; Köse C
    J Healthc Eng; 2017; 2017():4897258. PubMed ID: 29065611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blood vessel segmentation in color fundus images based on regional and Hessian features.
    Shah SAA; Tang TB; Faye I; Laude A
    Graefes Arch Clin Exp Ophthalmol; 2017 Aug; 255(8):1525-1533. PubMed ID: 28474130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NFN+: A novel network followed network for retinal vessel segmentation.
    Wu Y; Xia Y; Song Y; Zhang Y; Cai W
    Neural Netw; 2020 Jun; 126():153-162. PubMed ID: 32222424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Segmentation of retinal blood vessels based on centerline extraction].
    Zhou L; Shen J; Liao W; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):1-6. PubMed ID: 22403997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extraction and reconstruction of retinal vasculature.
    Ahmad Fadzil MH; Izhar LI; Venkatachalam PA; Karunakar TV
    J Med Eng Technol; 2007; 31(6):435-42. PubMed ID: 17994417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiscale Joint Optimization Strategy for Retinal Vascular Segmentation.
    Yan M; Zhou J; Luo C; Xu T; Xing X
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Kuchinka SN; Parhi KK
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1562-1574. PubMed ID: 26316237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Joint segmentation and classification of retinal arteries/veins from fundus images.
    Girard F; Kavalec C; Cheriet F
    Artif Intell Med; 2019 Mar; 94():96-109. PubMed ID: 30871687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diabetic and Hypertensive Retinopathy Screening in Fundus Images Using Artificially Intelligent Shallow Architectures.
    Arsalan M; Haider A; Choi J; Park KR
    J Pers Med; 2021 Dec; 12(1):. PubMed ID: 35055322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images.
    Marin D; Gegundez-Arias ME; Suero A; Bravo JM
    Comput Methods Programs Biomed; 2015 Feb; 118(2):173-85. PubMed ID: 25433912
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [New Approach of Fundus Image Segmentation Evaluation Based on Topology Structure].
    Sheng H; Dai P; Liu Z; Zhang-Wen M; Zhao Y; Fan M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Oct; 32(5):1100-5. PubMed ID: 26964319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parametric model fitting-based approach for retinal blood vessel caliber estimation in eye fundus images.
    Araújo T; Mendonça AM; Campilho A
    PLoS One; 2018; 13(4):e0194702. PubMed ID: 29668759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel retinal vessel detection approach based on multiple deep convolution neural networks.
    Guo Y; Budak Ü; Şengür A
    Comput Methods Programs Biomed; 2018 Dec; 167():43-48. PubMed ID: 30501859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.