These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34517517)

  • 1. Prediction of presynaptic and postsynaptic neurotoxins based on feature extraction.
    Zhu W; Guo Y; Zou Q
    Math Biosci Eng; 2021 Jun; 18(5):5943-5958. PubMed ID: 34517517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Presynaptic and Postsynaptic Neurotoxins by Developing Feature Selection Technique.
    Tang H; Yang Y; Zhang C; Chen R; Huang P; Duan C; Zou P
    Biomed Res Int; 2017; 2017():3267325. PubMed ID: 28303250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of presynaptic and postsynaptic neurotoxins by the increment of diversity.
    Yang L; Li Q
    Toxicol In Vitro; 2009 Mar; 23(2):346-8. PubMed ID: 19138734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pippin: A random forest-based method for identifying presynaptic and postsynaptic neurotoxins.
    Li P; Zhang H; Zhao X; Jia C; Li F; Song J
    J Bioinform Comput Biol; 2020 Apr; 18(2):2050008. PubMed ID: 32372714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou's general pseudo amino acid composition and motif features.
    Mei J; Zhao J
    J Theor Biol; 2018 Jun; 447():147-153. PubMed ID: 29596863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilize a few features to classify presynaptic and postsynaptic neurotoxins.
    Wan H; Liu Q; Ju Y
    Comput Biol Med; 2023 Jan; 152():106380. PubMed ID: 36473343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of presynaptic and postsynaptic neurotoxins by combining various Chou's pseudo components.
    Huo H; Li T; Wang S; Lv Y; Zuo Y; Yang L
    Sci Rep; 2017 Jul; 7(1):5827. PubMed ID: 28724993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ACP_MS: prediction of anticancer peptides based on feature extraction.
    Zhou C; Peng D; Liao B; Jia R; Wu F
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36326080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of neurotoxins by support vector machine based on multiple feature vectors.
    Guang XM; Guo YZ; Wang X; Li ML
    Interdiscip Sci; 2010 Sep; 2(3):241-6. PubMed ID: 20658336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurotoxins from venoms of the Hymenoptera--twenty-five years of research in Amsterdam.
    Piek T
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1990; 96(2):223-33. PubMed ID: 1980434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suramin inhibits the toxic effects of presynaptic neurotoxins at the mouse motor nerve terminals.
    Lin-Shiau SY; Lin MJ
    Eur J Pharmacol; 1999 Oct; 382(2):75-80. PubMed ID: 10528141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological characterization of α-elapitoxin-Al2a from the venom of the Australian pygmy copperhead (Austrelaps labialis): an atypical long-chain α-neurotoxin with only weak affinity for α7 nicotinic receptors.
    Marcon F; Leblanc M; Vetter I; Lewis RJ; Escoubas P; Nicholson GM
    Biochem Pharmacol; 2012 Sep; 84(6):851-63. PubMed ID: 22771828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction Model of Cardiac Risk for Dental Extraction in Elderly Patients with Cardiovascular Diseases.
    Tang M; Hu P; Wang CF; Yu CQ; Sheng J; Ma SJ
    Gerontology; 2019; 65(6):591-598. PubMed ID: 31048587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro neuromuscular activity of snake venoms.
    Hodgson WC; Wickramaratna JC
    Clin Exp Pharmacol Physiol; 2002 Sep; 29(9):807-14. PubMed ID: 12165047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of Clostridium botulinum neurotoxin to the presynaptic membrane in the central nervous system.
    Hirokawa N; Kitamura M
    J Cell Biol; 1979 Apr; 81(1):43-9. PubMed ID: 383721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of α-elapitoxin-Bf1b, a postsynaptic neurotoxin from Malaysian Bungarus fasciatus venom.
    Rusmili MR; Tee TY; Mustafa MR; Othman I; Hodgson WC
    Biochem Pharmacol; 2014 Mar; 88(2):229-36. PubMed ID: 24440452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disorders of neuromuscular transmission due to natural environmental toxins.
    Senanayake N; Román GC
    J Neurol Sci; 1992 Jan; 107(1):1-13. PubMed ID: 1315843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Snake and Spider Toxins Induce a Rapid Recovery of Function of Botulinum Neurotoxin Paralysed Neuromuscular Junction.
    Duregotti E; Zanetti G; Scorzeto M; Megighian A; Montecucco C; Pirazzini M; Rigoni M
    Toxins (Basel); 2015 Dec; 7(12):5322-36. PubMed ID: 26670253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylcholine receptor binding characteristics of snake and cone snail venom postsynaptic neurotoxins: further studies with a non-radioactive assay.
    Stiles BG
    Toxicon; 1993 Jul; 31(7):825-34. PubMed ID: 8212028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-Free (XIC) Quantification of Venom Procoagulant and Neurotoxin Expression in Related Australian Elapid Snakes Gives Insight into Venom Toxicity Evolution.
    Skejic J; Steer DL; Dunstan N; Hodgson WC
    J Proteome Res; 2015 Nov; 14(11):4896-906. PubMed ID: 26486890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.