These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 3451763)

  • 1. In vivo nuclear magnetic resonance spin-lattice relaxation time measurements from restricted volumes.
    Morrone T; Benevento J; DiMassimo R; Martino A; Orbach E; Weiss M
    Am J Physiol Imaging; 1987; 2(1):17-23. PubMed ID: 3451763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective.
    Jara H; Sakai O; Mankal P; Irving RP; Norbash AM
    Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxo-volumetric multispectral quantitative magnetic resonance imaging of the brain over the human lifespan: global and regional aging patterns.
    Saito N; Sakai O; Ozonoff A; Jara H
    Magn Reson Imaging; 2009 Sep; 27(7):895-906. PubMed ID: 19520539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of tissue T1 spin-lattice relaxation time and discrimination of large draining veins using transient EPI data sets in BOLD-weighted fMRI acquisitions.
    Mazaheri Y; Biswal BB; Ward BD; Hyde JS
    Neuroimage; 2006 Aug; 32(2):603-15. PubMed ID: 16713305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage.
    Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S
    Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative T1 mapping of hepatic encephalopathy using magnetic resonance imaging.
    Shah NJ; Neeb H; Zaitsev M; Steinhoff S; Kircheis G; Amunts K; Häussinger D; Zilles K
    Hepatology; 2003 Nov; 38(5):1219-26. PubMed ID: 14578860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-lattice relaxation and a fast T1-map acquisition method in MRI with transient-state magnetization.
    Hsu JJ; Lowe IJ
    J Magn Reson; 2004 Aug; 169(2):270-8. PubMed ID: 15261622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variability of magnetic resonance parameters in pituitary adenomas at low temperature.
    Pócsik I; Kenyeres M; Pásztor E; Tompa K
    Physiol Chem Phys Med NMR; 1993; 25(2):137-44. PubMed ID: 8378440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T1 fast acquisition relaxation mapping (T1-FARM): an optimized reconstruction.
    Chen Z; Prato FS; McKenzie C
    IEEE Trans Med Imaging; 1998 Apr; 17(2):155-60. PubMed ID: 9688148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance study of virgin and explanted silicone breast prostheses. Can proton relaxation times be used to monitor their biostability?
    Dorne L; Stroman P; Rolland C; Auger M; Alikacem N; Bronskill M; Grondin P; King MW; Guidoin R
    ASAIO J; 1994; 40(3):M625-31. PubMed ID: 8555590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of longitudinal (T1) relaxation in the human lung at 3.0 Tesla with tissue-based and regional gradient analyses.
    Nichols MB; Paschal CB
    J Magn Reson Imaging; 2008 Jan; 27(1):224-8. PubMed ID: 18058926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo morphological characterisation of skin by MRI micro-imaging methods.
    Mirrashed F; Sharp JC
    Skin Res Technol; 2004 Aug; 10(3):149-60. PubMed ID: 15225264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin lattice relaxation time measurements in two-dimensional nuclear magnetic resonance imaging: corrections for plane selection and pulse sequence.
    Rosen BR; Pykett IL; Brady TJ
    J Comput Assist Tomogr; 1984 Apr; 8(2):195-9. PubMed ID: 6323554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast in vivo water quantification in rat brain oedema based on T(1) measurement at high magnetic field.
    Schwarcz A; Berente Z; Osz E; Dóczi T
    Acta Neurochir (Wien); 2002 Aug; 144(8):811-5; discussion 815-6. PubMed ID: 12181691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twenty new digital brain phantoms for creation of validation image data bases.
    Aubert-Broche B; Griffin M; Pike GB; Evans AC; Collins DL
    IEEE Trans Med Imaging; 2006 Nov; 25(11):1410-6. PubMed ID: 17117770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Magnetic resonance of the brain: comparative assessment of conventional sequences versus fast sequences].
    Cardone G; Gallucci M; Paluello GB; Gagliardo O; Castrucci M
    Radiol Med; 1997 May; 93(5):514-9. PubMed ID: 9280931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between oxygen tension and spin-lattice relaxation rate in tumors.
    Akber SF
    Eur J Radiol; 1989 Feb; 9(1):56-9. PubMed ID: 2731557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical efficiency of nuclear magnetic resonance imaging.
    Crooks LE; Ortendahl DA; Kaufman L; Hoenninger J; Arakawa M; Watts J; Cannon CR; Brant-Zawadzki M; Davis PL; Margulis AR
    Radiology; 1983 Jan; 146(1):123-8. PubMed ID: 6849032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance imaging in lymphoma--the role of spin lattice relaxation time measurement.
    Richards MA
    Cancer Surv; 1987; 6(2):315-41. PubMed ID: 3322550
    [No Abstract]   [Full Text] [Related]  

  • 20. Errors in spin-lattice relaxation time measurements from restricted volumes.
    Morrone T
    Magn Reson Med; 1987 Nov; 5(5):434-42. PubMed ID: 3431403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.