BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34517646)

  • 1. Ultrasensitive detection of trace chemical warfare agent-related compounds by thermal desorption associative ionization time-of-flight mass spectrometry.
    Huang J; Shu J; Yang B; Guo Y; Zhang Z; Jiang K; Li Z
    Talanta; 2021 Dec; 235():122788. PubMed ID: 34517646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis.
    Kanamori-Kataoka M; Seto Y
    J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct quantification of chemical warfare agents and related compounds at low ppt levels: comparing active capillary dielectric barrier discharge plasma ionization and secondary electrospray ionization mass spectrometry.
    Wolf JC; Schaer M; Siegenthaler P; Zenobi R
    Anal Chem; 2015 Jan; 87(1):723-9. PubMed ID: 25427190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using metal complex ion-molecule reactions in a miniature rectilinear ion trap mass spectrometer to detect chemical warfare agents.
    Graichen AM; Vachet RW
    J Am Soc Mass Spectrom; 2013 Jun; 24(6):917-25. PubMed ID: 23532782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a gas-cylinder-free plasma desorption/ionization system for on-site detection of chemical warfare agents.
    Iwai T; Kakegawa K; Aida M; Nagashima H; Nagoya T; Kanamori-Kataoka M; Miyahara H; Seto Y; Okino A
    Anal Chem; 2015 Jun; 87(11):5707-15. PubMed ID: 25958918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer.
    Smith JN; Noll RJ; Cooks RG
    Rapid Commun Mass Spectrom; 2011 May; 25(10):1437-44. PubMed ID: 21504010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive detection of volatile aldehydes with chemi-ionization-coupled time-of-flight mass spectrometry.
    Yang B; Xu C; Shu J; Li Z; Zhang H; Ma P
    Talanta; 2019 Mar; 194():888-894. PubMed ID: 30609620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ultrasensitive SPI/PAI ion source based on a high-flux VUV lamp and its applications for the online mass spectrometric detection of sub-pptv sulfur ethers.
    Guo Y; Wang H; Yang B; Shu J; Jiang K; Yu Z; Zhang Z; Li Z; Huang J; Wei Z
    Talanta; 2022 Sep; 247():123558. PubMed ID: 35605514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Dilute-and-shoot' RSLC-MS-MS method for fast detection of nerve and vesicant chemical warfare agent metabolites in urine.
    Rodin I; Braun A; Stavrianidi A; Baygildiev T; Shpigun O; Oreshkin D; Rybalchenko I
    J Anal Toxicol; 2015; 39(1):69-74. PubMed ID: 25326204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct detection of acetonitrile at the pptv level with photoinduced associative ionization time-of-flight mass spectrometry.
    Jiang K; Yu Z; Wei Z; Cheng S; Wang H; Yan Z; Shan L; Huang J; Yang B; Shu J
    Anal Methods; 2023 Jan; 15(3):368-376. PubMed ID: 36597774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator.
    Nagashima H; Kondo T; Nagoya T; Ikeda T; Kurimata N; Unoke S; Seto Y
    J Chromatogr A; 2015 Aug; 1406():279-90. PubMed ID: 26118803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometric analysis of chemical warfare agents and their degradation products in soil and synthetic samples.
    D'Agostino PA; Hancock JR; Chenier CL
    Eur J Mass Spectrom (Chichester); 2003; 9(6):609-18. PubMed ID: 15100471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of aqueous phase chemical warfare agent degradation products by negative mode ion mobility time-of-flight mass spectrometry [IM(tof)MS].
    Steiner WE; Harden CS; Hong F; Klopsch SJ; Hill HH; McHugh VM
    J Am Soc Mass Spectrom; 2006 Feb; 17(2):241-5. PubMed ID: 16413205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.
    Steiner WE; Clowers BH; Haigh PE; Hill HH
    Anal Chem; 2003 Nov; 75(22):6068-76. PubMed ID: 14615983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of chemical weapon agents and simulants using chemical ionization reaction time-of-flight mass spectrometry.
    Cordell RL; Willis KA; Wyche KP; Blake RS; Ellis AM; Monks PS
    Anal Chem; 2007 Nov; 79(21):8359-66. PubMed ID: 17894471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.
    Urabe T; Takahashi K; Kitagawa M; Sato T; Kondo T; Enomoto S; Kidera M; Seto Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():437-44. PubMed ID: 24211802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desorption electrospray ionization mass spectrometric analysis of organophosphorus chemical warfare agents using ion mobility and tandem mass spectrometry.
    D'Agostino PA; Chenier CL
    Rapid Commun Mass Spectrom; 2010 Jun; 24(11):1617-24. PubMed ID: 20486257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of human breath samples using a modified thermal desorption: gas chromatography electrospray ionization interface.
    Reynolds JC; Jimoh MA; Guallar-Hoyas C; Creaser CS; Siddiqui S; Paul Thomas CL
    J Breath Res; 2014 Sep; 8(3):037105. PubMed ID: 25190194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Quantification of tabun, sarin, soman, cyclosarin, and sulfur mustard by focusing agents: A field portable gas chromatography-mass spectrometry study.
    Kelly JT; Qualley A; Hughes GT; Rubenstein MH; Malloy TA; Piatkowski T
    J Chromatogr A; 2021 Jan; 1636():461784. PubMed ID: 33360649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Chemical Warfare Agents with a Miniaturized High-Performance Drift Tube Ion Mobility Spectrometer Using High-Energetic Photons for Ionization.
    Ahrens A; Allers M; Bock H; Hitzemann M; Ficks A; Zimmermann S
    Anal Chem; 2022 Nov; 94(44):15440-15447. PubMed ID: 36301910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.