These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34517646)

  • 21. Liquid chromatography electrospray tandem mass spectrometric and desorption electrospray ionization tandem mass spectrometric analysis of chemical warfare agents in office media typically collected during a forensic investigation.
    D'Agostino PA; Hancock JR; Chenier CL; Lepage CR
    J Chromatogr A; 2006 Mar; 1110(1-2):86-94. PubMed ID: 16480731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic Understanding of the Ultrahigh Ionization Efficiencies (up to 28%) of Excited-State CH
    Huang J; Yang B; Shu J; Zhang Z; Li Z; Jiang K
    Anal Chem; 2019 May; 91(9):5605-5612. PubMed ID: 30841695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.
    Seto Y; Sekiguchi H; Maruko H; Yamashiro S; Sano Y; Takayama Y; Sekioka R; Yamaguchi S; Kishi S; Satoh T; Sekiguchi H; Iura K; Nagashima H; Nagoya T; Tsuge K; Ohsawa I; Okumura A; Takada Y; Ezawa N; Watanabe S; Hashimoto H
    Anal Chem; 2014 May; 86(9):4316-26. PubMed ID: 24678766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.
    Sun W; Liang M; Li Z; Shu J; Yang B; Xu C; Zou Y
    Talanta; 2016 Aug; 156-157():191-195. PubMed ID: 27260452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.
    Satoh T; Kishi S; Nagashima H; Tachikawa M; Kanamori-Kataoka M; Nakagawa T; Kitagawa N; Tokita K; Yamamoto S; Seto Y
    Anal Chim Acta; 2015 Mar; 865():39-52. PubMed ID: 25732583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous detection and identification of precursors, degradation and co-products of chemical warfare agents in drinking water by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.
    Tak V; Purohit A; Pardasani D; Goud DR; Jain R; Dubey DK
    J Chromatogr A; 2014 Nov; 1370():80-92. PubMed ID: 25454132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces.
    L'Hermite D; Vors E; Vercouter T; Moutiers G
    Environ Sci Pollut Res Int; 2016 May; 23(9):8219-26. PubMed ID: 26906000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Screening hydrolysis products of sulfur mustard agents by high-performance liquid chromatography with inductively coupled plasma mass spectrometry detection.
    Kroening KK; Richardson DD; Afton S; Caruso JA
    Anal Bioanal Chem; 2009 Apr; 393(8):1949-56. PubMed ID: 19214483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of headspace solid-phase microextraction and gas chromatography-mass spectrometry for detection of the chemical warfare agent bis(2-chloroethyl) sulfide in soil.
    Kimm GL; Hook GL; Smith PA
    J Chromatogr A; 2002 Sep; 971(1-2):185-91. PubMed ID: 12350113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.
    Martin AN; Farquar GR; Frank M; Gard EE; Fergenson DP
    Anal Chem; 2007 Aug; 79(16):6368-75. PubMed ID: 17630721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct gas-phase detection of nerve and blister warfare agents utilizing active capillary plasma ionization mass spectrometry.
    Wolf JC; Schaer M; P Siegenthaler P; Zenobi R
    Eur J Mass Spectrom (Chichester); 2015; 21(3):305-12. PubMed ID: 26307710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sampling and analyses of surfaces contaminated with chemical warfare agents by using a newly developed triple layered composite wipe.
    Imran M; Kumar N; Thakare VB; Gupta AK; Acharya J; Garg P
    Anal Bioanal Chem; 2020 Feb; 412(5):1097-1110. PubMed ID: 31907592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gas chromatography-full scan mass spectrometry determination of traces of chemical warfare agents and their impurities in air samples by inlet based thermal desorption of sorbent tubes.
    Terzic O; Swahn I; Cretu G; Palit M; Mallard G
    J Chromatogr A; 2012 Feb; 1225():182-92. PubMed ID: 22251886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of chemical warfare agents. II. Use of thiols and statistical experimental design for the trace level determination of vesicant compounds in air samples.
    Muir B; Quick S; Slater BJ; Cooper DB; Moran MC; Timperley CM; Carrick WA; Burnell CK
    J Chromatogr A; 2005 Mar; 1068(2):315-26. PubMed ID: 15830938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atmospheric pressure soft ionization for gas chromatography with dielectric barrier discharge ionization-mass spectrometry (GC-DBDI-MS).
    Mirabelli MF; Wolf JC; Zenobi R
    Analyst; 2017 May; 142(11):1909-1915. PubMed ID: 28443843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specificity enhancement by electrospray ionization multistage mass spectrometry--a valuable tool for differentiation and identification of 'V'-type chemical warfare agents.
    Weissberg A; Tzanani N; Dagan S
    J Mass Spectrom; 2013 Dec; 48(12):1340-8. PubMed ID: 24338889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of volatile organic compounds in breath using thermal desorption electrospray ionization-ion mobility-mass spectrometry.
    Reynolds JC; Blackburn GJ; Guallar-Hoyas C; Moll VH; Bocos-Bintintan V; Kaur-Atwal G; Howdle MD; Harry EL; Brown LJ; Creaser CS; Thomas CL
    Anal Chem; 2010 Mar; 82(5):2139-44. PubMed ID: 20143891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. μ-PADs for detection of chemical warfare agents.
    Pardasani D; Tak V; Purohit AK; Dubey DK
    Analyst; 2012 Dec; 137(23):5648-53. PubMed ID: 23086107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of Chemical Warfare Agent-Related Phenylarsenic Compounds in Marine Biota Samples by LC-HESI/MS/MS.
    Niemikoski H; Söderström M; Vanninen P
    Anal Chem; 2017 Oct; 89(20):11129-11134. PubMed ID: 28877433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct Coupling of Solid-Phase Microextraction with Mass Spectrometry: Sub-pg/g Sensitivity Achieved Using a Dielectric Barrier Discharge Ionization Source.
    Mirabelli MF; Wolf JC; Zenobi R
    Anal Chem; 2016 Jul; 88(14):7252-8. PubMed ID: 27332082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.