These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34517666)

  • 1. Construction of a damage site-specific fluorescent biosensor for single-molecule detection of DNA damage.
    Zhang Y; Han Y; Zou X; Xu Q; Ma F; Zhang CY
    Talanta; 2021 Dec; 235():122809. PubMed ID: 34517666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a CRISPR-Cas-Based Biosensor for Rapid and Sensitive Detection of 8-Oxoguanine DNA Glycosylase.
    Zhang Q; Zhao S; Tian X; Qiu JG; Zhang CY
    Anal Chem; 2022 Feb; 94(4):2119-2125. PubMed ID: 35050578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base-Excision-Repair-Induced Construction of a Single Quantum-Dot-Based Sensor for Sensitive Detection of DNA Glycosylase Activity.
    Wang LJ; Ma F; Tang B; Zhang CY
    Anal Chem; 2016 Aug; 88(15):7523-9. PubMed ID: 27401302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free visual biosensor based on cascade amplification for the detection of Salmonella.
    Zhang Y; Tian J; Li K; Tian H; Xu W
    Anal Chim Acta; 2019 Oct; 1075():144-151. PubMed ID: 31196420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites.
    Harrison L; Hatahet Z; Wallace SS
    J Mol Biol; 1999 Jul; 290(3):667-84. PubMed ID: 10395822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A distinct role of formamidopyrimidine DNA glycosylase (MutM) in down-regulation of accumulation of G, C mutations and protection against oxidative stress in mycobacteria.
    Jain R; Kumar P; Varshney U
    DNA Repair (Amst); 2007 Dec; 6(12):1774-85. PubMed ID: 17698424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elongation and Ligation-Mediated Differential Coding for Label-Free and Locus-Specific Analysis of 8-Oxo-7,8-dihydroguanine in DNA.
    Zhao NN; Wang Q; Yang DM; Li DL; Han Y; Zhao S; Zou X; Zhang CY
    Anal Chem; 2024 Apr; 96(13):5323-5330. PubMed ID: 38501982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition and kinetics for excision of a base lesion within clustered DNA damage by the Escherichia coli proteins Fpg and Nth.
    David-Cordonnier MH; Laval J; O'Neill P
    Biochemistry; 2001 May; 40(19):5738-46. PubMed ID: 11341839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of the opposite-base preference and interactions in the active site of formamidopyrimidine-DNA glycosylase.
    Popov AV; Endutkin AV; Vorobjev YN; Zharkov DO
    BMC Struct Biol; 2017 May; 17(1):5. PubMed ID: 28482831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target-mediated hyperbranched amplification for sensitive detection of human alkyladenine DNA glycosylase from HeLa cells.
    Wang L; Zhang H; Xie Y; Chen H; Ren C; Chen X
    Talanta; 2019 Mar; 194():846-851. PubMed ID: 30609614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of oxidative DNA repair in cadmium-adapted alveolar epithelial cells and the potential involvement of metallothionein.
    Potts RJ; Bespalov IA; Wallace SS; Melamede RJ; Hart BA
    Toxicology; 2001 Mar; 161(1-2):25-38. PubMed ID: 11295253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct repair activities of human 7,8-dihydro-8-oxoguanine DNA glycosylase and formamidopyrimidine DNA glycosylase for formamidopyrimidine and 7,8-dihydro-8-oxoguanine.
    Asagoshi K; Yamada T; Terato H; Ohyama Y; Monden Y; Arai T; Nishimura S; Aburatani H; Lindahl T; Ide H
    J Biol Chem; 2000 Feb; 275(7):4956-64. PubMed ID: 10671534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly-sensitive and homogenous detection of 8-oxoguanine based DNA oxidative damage by a CRISPR-enhanced structure-switching aptamer assay.
    Hu H; Dong K; Yan B; Mu Y; Liao Y; Zhang L; Guo S; Xiao X; Wang X
    Biosens Bioelectron; 2023 Nov; 239():115588. PubMed ID: 37597500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA glycosylases for 8-oxoguanine repair in Staphylococcus aureus.
    Endutkin AV; Panferova EP; Barmatov AE; Zharkov DO
    DNA Repair (Amst); 2021 Sep; 105():103160. PubMed ID: 34192601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive detection of formamidopyrimidine-DNA glycosylase activity based on target-induced self-primed rolling circle amplification and magnetic nanoprobes.
    Song J; Yin F; Li X; Dong N; Zhu Y; Shao Y; Chen B; Jiang W; Li CZ
    Analyst; 2018 Mar; 143(7):1593-1598. PubMed ID: 29517783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrrolo-dC modified duplex DNA as a novel probe for the sensitive assay of base excision repair enzyme activity.
    Lee CY; Park KS; Park HG
    Biosens Bioelectron; 2017 Dec; 98():210-214. PubMed ID: 28683413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excision of 8-oxoguanine within clustered damage by the yeast OGG1 protein.
    David-Cordonnier MH; Boiteux S; O'Neill P
    Nucleic Acids Res; 2001 Mar; 29(5):1107-13. PubMed ID: 11222760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [New non-hydrolyzable substrate analogs for 8-oxoguanine-DNA glycosylases].
    Taraneneko MV; Volkov EM; Saparbarv MK; Kuznetsov SA
    Mol Biol (Mosk); 2004; 38(5):858-68. PubMed ID: 15554188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions.
    Hazra TK; Hill JW; Izumi T; Mitra S
    Prog Nucleic Acid Res Mol Biol; 2001; 68():193-205. PubMed ID: 11554297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of Enzymatic Labeling with Single-Molecule Detection for Sensitive Quantification of Diverse DNA Damages.
    Zhang Y; Hua RN; Zhang CY
    Anal Chem; 2020 Apr; 92(7):4700-4706. PubMed ID: 32193925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.