These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34518231)

  • 1. Geometry of gene regulatory dynamics.
    Rand DA; Raju A; Sáez M; Corson F; Siggia ED
    Proc Natl Acad Sci U S A; 2021 Sep; 118(38):. PubMed ID: 34518231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Modelling of the Waddington Epigenetic Landscape.
    Taherian Fard A; Ragan MA
    Methods Mol Biol; 2019; 1975():157-171. PubMed ID: 31062309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic identification of cell-fate regulatory programs using a single-cell atlas of mouse development.
    Fei L; Chen H; Ma L; E W; Wang R; Fang X; Zhou Z; Sun H; Wang J; Jiang M; Wang X; Yu C; Mei Y; Jia D; Zhang T; Han X; Guo G
    Nat Genet; 2022 Jul; 54(7):1051-1061. PubMed ID: 35817981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical landscapes of cell fate decisions.
    Sáez M; Briscoe J; Rand DA
    Interface Focus; 2022 Aug; 12(4):20220002. PubMed ID: 35860004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positive circuits and d-dimensional spatial differentiation: application to the formation of sense organs in Drosophila.
    Crumière A; Sablik M
    Biosystems; 2008; 94(1-2):102-8. PubMed ID: 18723072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deterministic map of Waddington's epigenetic landscape for cell fate specification.
    Bhattacharya S; Zhang Q; Andersen ME
    BMC Syst Biol; 2011 May; 5():85. PubMed ID: 21619617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kolmogorov complexity of epithelial pattern formation: the role of regulatory network configuration.
    Flann NS; Mohamadlou H; Podgorski GJ
    Biosystems; 2013 May; 112(2):131-8. PubMed ID: 23499820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation.
    Li C; Wang J
    J R Soc Interface; 2013 Dec; 10(89):20130787. PubMed ID: 24132204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise distorts the epigenetic landscape and shapes cell-fate decisions.
    Coomer MA; Ham L; Stumpf MPH
    Cell Syst; 2022 Jan; 13(1):83-102.e6. PubMed ID: 34626539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landscape of gene networks for random parameter perturbation.
    Li C
    Integr Biol (Camb); 2018 Feb; 10(2):92-99. PubMed ID: 29340399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular genetic regulatory networks increase organization during pattern formation.
    Mohamadlou H; Podgorski GJ; Flann NS
    Biosystems; 2016 Aug; 146():77-84. PubMed ID: 27327866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative stability of network states in Boolean network models of gene regulation in development.
    Zhou JX; Samal A; d'Hérouël AF; Price ND; Huang S
    Biosystems; 2016; 142-143():15-24. PubMed ID: 26965665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A software tool to model genetic regulatory networks. Applications to the modeling of threshold phenomena and of spatial patterning in Drosophila.
    Dilão R; Muraro D
    PLoS One; 2010 May; 5(5):e10743. PubMed ID: 20523731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Impact of Self-Loops on Boolean Networks Attractor Landscape and Implications for Cell Differentiation Modelling.
    Montagna S; Braccini M; Roli A
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2702-2713. PubMed ID: 31985435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Tug-of-War Mechanism for Pattern Formation in a Genetic Network.
    Gomez MM; Arcak M
    ACS Synth Biol; 2017 Nov; 6(11):2056-2066. PubMed ID: 28763188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A gene regulatory network for cell fate specification in Ciona embryos.
    Satou Y
    Curr Top Dev Biol; 2020; 139():1-33. PubMed ID: 32450958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducing chaos in a gene regulatory network by coupling an oscillating dynamics with a hysteresis-type one.
    Poignard C
    J Math Biol; 2014 Aug; 69(2):335-68. PubMed ID: 23842815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal Decoding of Cellular Identities in a Genetic Network.
    Petkova MD; Tkačik G; Bialek W; Wieschaus EF; Gregor T
    Cell; 2019 Feb; 176(4):844-855.e15. PubMed ID: 30712870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene regulation during
    Pyrowolakis G; Veikkolainen V; Yakoby N; Shvartsman SY
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5808-5813. PubMed ID: 28584108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cis-Regulatory networks during development: a view of Drosophila.
    Bonn S; Furlong EE
    Curr Opin Genet Dev; 2008 Dec; 18(6):513-20. PubMed ID: 18929653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.