These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34518306)

  • 21. Intrinsic physiological properties underlie auditory response diversity in the avian cochlear nucleus.
    Brown DH; Hyson RL
    J Neurophysiol; 2019 Mar; 121(3):908-927. PubMed ID: 30649984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Target-specific regulation of presynaptic release properties at auditory nerve terminals in the avian cochlear nucleus.
    Ahn J; MacLeod KM
    J Neurophysiol; 2016 Mar; 115(3):1679-90. PubMed ID: 26719087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus.
    Oertel D; Bal R; Gardner SM; Smith PH; Joris PX
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11773-9. PubMed ID: 11050208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interplay between low threshold voltage-gated K(+) channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis.
    Hamlet WR; Liu YW; Tang ZQ; Lu Y
    Front Neural Circuits; 2014; 8():51. PubMed ID: 24904297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of synaptic group II metabotropic glutamate receptors induces long-term depression at GABAergic synapses in CNS neurons.
    Tang ZQ; Liu YW; Shi W; Dinh EH; Hamlet WR; Curry RJ; Lu Y
    J Neurosci; 2013 Oct; 33(40):15964-77. PubMed ID: 24089501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Xenon modulates synaptic transmission to rat hippocampal CA3 neurons at both pre- and postsynaptic sites.
    Nonaka K; Kotani N; Akaike H; Shin MC; Yamaga T; Nagami H; Akaike N
    J Physiol; 2019 Dec; 597(24):5915-5933. PubMed ID: 31598974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synaptic activity-induced Ca(2+) signaling in avian cochlear nucleus magnocellularis neurons.
    Wang LC; Tang ZQ; Lu Y
    Neurosci Res; 2012 Feb; 72(2):129-39. PubMed ID: 22134051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GABA(B) receptor activation modulates GABA(A) receptor-mediated inhibition in chicken nucleus magnocellularis neurons.
    Lu Y; Burger RM; Rubel EW
    J Neurophysiol; 2005 Mar; 93(3):1429-38. PubMed ID: 15483063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of phase information at low sound frequency in nucleus magnocellularis of the chicken.
    Fukui I; Sato T; Ohmori H
    J Neurophysiol; 2006 Aug; 96(2):633-41. PubMed ID: 16687616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of glutamatergic and GABAergic neurotransmission in the chick nucleus laminaris: role of N-type calcium channels.
    Lu Y
    Neuroscience; 2009 Dec; 164(3):1009-19. PubMed ID: 19751802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.
    Antunes FM; Rubio ME; Kandler K
    J Neurosci; 2020 Mar; 40(12):2471-2484. PubMed ID: 32051325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of the postsynaptic scaffold PSD-95 and development of synaptic physiology during giant terminal formation in the auditory brainstem of the chicken.
    Goyer D; Fensky L; Hilverling AM; Kurth S; Kuenzel T
    Eur J Neurosci; 2015 May; 41(11):1416-29. PubMed ID: 25903469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generating synchrony from the asynchronous: compensation for cochlear traveling wave delays by the dendrites of individual brainstem neurons.
    McGinley MJ; Liberman MC; Bal R; Oertel D
    J Neurosci; 2012 Jul; 32(27):9301-11. PubMed ID: 22764237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A map of functional synaptic connectivity in the mouse anteroventral cochlear nucleus.
    Campagnola L; Manis PB
    J Neurosci; 2014 Feb; 34(6):2214-30. PubMed ID: 24501361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A developmental switch to GABAergic inhibition dependent on increases in Kv1-type K+ currents.
    Howard MA; Burger RM; Rubel EW
    J Neurosci; 2007 Feb; 27(8):2112-23. PubMed ID: 17314306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitivity of cochlear nucleus neurons to spatio-temporal changes in auditory nerve activity.
    Wang GI; Delgutte B
    J Neurophysiol; 2012 Dec; 108(12):3172-95. PubMed ID: 22972956
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SK Channels Regulate Resting Properties and Signaling Reliability of a Developing Fast-Spiking Neuron.
    Zhang Y; Huang H
    J Neurosci; 2017 Nov; 37(44):10738-10747. PubMed ID: 28982705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factors controlling the input-output relationship of spherical bushy cells in the gerbil cochlear nucleus.
    Kuenzel T; Borst JG; van der Heijden M
    J Neurosci; 2011 Mar; 31(11):4260-73. PubMed ID: 21411667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of synaptic depression on spike timing at the endbulb of Held.
    Yang H; Xu-Friedman MA
    J Neurophysiol; 2009 Sep; 102(3):1699-710. PubMed ID: 19587324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.