These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 34518339)

  • 1. Mechanisms of Chromosome Folding and Nuclear Organization: Their Interplay and Open Questions.
    Mirny L; Dekker J
    Cold Spring Harb Perspect Biol; 2022 Jul; 14(7):. PubMed ID: 34518339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome organization by one-sided and two-sided loop extrusion.
    Banigan EJ; van den Berg AA; Brandão HB; Marko JF; Mirny LA
    Elife; 2020 Apr; 9():. PubMed ID: 32250245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization.
    Knoch TA
    Results Probl Cell Differ; 2022; 70():495-549. PubMed ID: 36348120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome organization through the cell cycle at a glance.
    Srinivasan D; Shisode T; Shrinet J; Fraser P
    J Cell Sci; 2022 May; 135(10):. PubMed ID: 35608019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hit the brakes - a new perspective on the loop extrusion mechanism of cohesin and other SMC complexes.
    Matityahu A; Onn I
    J Cell Sci; 2021 Jan; 134(1):. PubMed ID: 33419949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compartmentalization with nuclear landmarks yields random, yet precise, genome organization.
    Kamat K; Lao Z; Qi Y; Wang Y; Ma J; Zhang B
    Biophys J; 2023 Apr; 122(7):1376-1389. PubMed ID: 36871158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two major mechanisms of chromosome organization.
    Mirny LA; Imakaev M; Abdennur N
    Curr Opin Cell Biol; 2019 Jun; 58():142-152. PubMed ID: 31228682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial organization of chromatin domains and compartments in single chromosomes.
    Wang S; Su JH; Beliveau BJ; Bintu B; Moffitt JR; Wu CT; Zhuang X
    Science; 2016 Aug; 353(6299):598-602. PubMed ID: 27445307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture.
    Cremer T; Kreth G; Koester H; Fink RH; Heintzmann R; Cremer M; Solovei I; Zink D; Cremer C
    Crit Rev Eukaryot Gene Expr; 2000; 10(2):179-212. PubMed ID: 11186332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A predictive computational model of the dynamic 3D interphase yeast nucleus.
    Wong H; Marie-Nelly H; Herbert S; Carrivain P; Blanc H; Koszul R; Fabre E; Zimmer C
    Curr Biol; 2012 Oct; 22(20):1881-90. PubMed ID: 22940469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Compartmentalization of the cell nucleus and spatial organization of the genome].
    Gavrilov AA; Razin SV
    Mol Biol (Mosk); 2015; 49(1):26-45. PubMed ID: 25916108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural reorganization and relaxation dynamics of axially stressed chromosomes.
    Ruben BS; Brahmachari S; Contessoto VG; Cheng RR; Oliveira Junior AB; Di Pierro M; Onuchic JN
    Biophys J; 2023 May; 122(9):1633-1645. PubMed ID: 36960531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomics tools for unraveling chromosome architecture.
    van Steensel B; Dekker J
    Nat Biotechnol; 2010 Oct; 28(10):1089-95. PubMed ID: 20944601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus.
    Vazquez J; Belmont AS; Sedat JW
    Curr Biol; 2001 Aug; 11(16):1227-39. PubMed ID: 11525737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromosome disentanglement driven via optimal compaction of loop-extruded brush structures.
    Brahmachari S; Marko JF
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):24956-24965. PubMed ID: 31757850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Condensin II drives large-scale folding and spatial partitioning of interphase chromosomes in Drosophila nuclei.
    Rosin LF; Nguyen SC; Joyce EF
    PLoS Genet; 2018 Jul; 14(7):e1007393. PubMed ID: 30001329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moving chromatin within the interphase nucleus-controlled transitions?
    Chuang CH; Belmont AS
    Semin Cell Dev Biol; 2007 Oct; 18(5):698-706. PubMed ID: 17905613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture.
    Dekker J
    Epigenetics Chromatin; 2014; 7(1):25. PubMed ID: 25435919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SMC5/6 complex: folding chromosomes back into shape when genomes take a break.
    Roy S; Adhikary H; D'Amours D
    Nucleic Acids Res; 2024 Mar; 52(5):2112-2129. PubMed ID: 38375830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.