These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 34518609)

  • 1. Efficient biallelic knock-in in mouse embryonic stem cells by in vivo-linearization of donor and transient inhibition of DNA polymerase θ/DNA-PK.
    Arai D; Nakao Y
    Sci Rep; 2021 Sep; 11(1):18132. PubMed ID: 34518609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.
    Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW
    Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-efficiency and versatile CRISPR/Cas9-mediated HDR-based biallelic editing system.
    Li X; Sun B; Qian H; Ma J; Paolino M; Zhang Z
    J Zhejiang Univ Sci B; 2022 Feb; 23(2):141-152. PubMed ID: 35187887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
    He X; Tan C; Wang F; Wang Y; Zhou R; Cui D; You W; Zhao H; Ren J; Feng B
    Nucleic Acids Res; 2016 May; 44(9):e85. PubMed ID: 26850641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms.
    Kostyrko K; Mermod N
    Nucleic Acids Res; 2016 Apr; 44(6):e56. PubMed ID: 26657630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas9-Mediated Genome Modifications in Zebrafish.
    Kamachi Y; Kawahara A
    Methods Mol Biol; 2023; 2637():313-324. PubMed ID: 36773157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish.
    Kawahara A
    Methods Mol Biol; 2017; 1630():165-173. PubMed ID: 28643258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats.
    Yoshimi K; Oka Y; Miyasaka Y; Kotani Y; Yasumura M; Uno Y; Hattori K; Tanigawa A; Sato M; Oya M; Nakamura K; Matsushita N; Kobayashi K; Mashimo T
    Hum Genet; 2021 Feb; 140(2):277-287. PubMed ID: 32617796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways.
    Schimmel J; Muñoz-Subirana N; Kool H; van Schendel R; van der Vlies S; Kamp JA; de Vrij FMS; Kushner SA; Smith GCM; Boulton SJ; Tijsterman M
    Cell Rep; 2023 Feb; 42(2):112019. PubMed ID: 36701230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing.
    Miyaoka Y; Berman JR; Cooper SB; Mayerl SJ; Chan AH; Zhang B; Karlin-Neumann GA; Conklin BR
    Sci Rep; 2016 Mar; 6():23549. PubMed ID: 27030102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous precise editing of multiple genes in human cells.
    Riesenberg S; Chintalapati M; Macak D; Kanis P; Maricic T; Pääbo S
    Nucleic Acids Res; 2019 Nov; 47(19):e116. PubMed ID: 31392986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics and competition of CRISPR-Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing.
    Fu YW; Dai XY; Wang WT; Yang ZX; Zhao JJ; Zhang JP; Wen W; Zhang F; Oberg KC; Zhang L; Cheng T; Zhang XB
    Nucleic Acids Res; 2021 Jan; 49(2):969-985. PubMed ID: 33398341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9-mediated targeted knock-in of large constructs using nocodazole and RNase HII.
    Eghbalsaied S; Kues WA
    Sci Rep; 2023 Feb; 13(1):2690. PubMed ID: 36792645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells.
    Shy BR; MacDougall MS; Clarke R; Merrill BJ
    Nucleic Acids Res; 2016 Sep; 44(16):7997-8010. PubMed ID: 27484482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of CRISPR-Cas9 induced precise gene editing by targeting histone H2A-K15 ubiquitination.
    Bashir S; Dang T; Rossius J; Wolf J; Kühn R
    BMC Biotechnol; 2020 Oct; 20(1):57. PubMed ID: 33097066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted integration in human cells through single crossover mediated by ZFN or CRISPR/Cas9.
    Liu X; Wang M; Qin Y; Shi X; Cong P; Chen Y; He Z
    BMC Biotechnol; 2018 Oct; 18(1):66. PubMed ID: 30340581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells.
    Li G; Zhang X; Zhong C; Mo J; Quan R; Yang J; Liu D; Li Z; Yang H; Wu Z
    Sci Rep; 2017 Aug; 7(1):8943. PubMed ID: 28827551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites.
    Jayavaradhan R; Pillis DM; Goodman M; Zhang F; Zhang Y; Andreassen PR; Malik P
    Nat Commun; 2019 Jun; 10(1):2866. PubMed ID: 31253785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.