These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34518854)

  • 1. Planar hydrodynamic traps and buried channels for bead and cell trapping and releasing.
    Lipp C; Uning K; Cottet J; Migliozzi D; Bertsch A; Renaud P
    Lab Chip; 2021 Sep; 21(19):3686-3694. PubMed ID: 34518854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application.
    Khalili AA; Ahmad MR
    Int J Mol Sci; 2015 Nov; 16(11):26770-85. PubMed ID: 26569218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic single-cell array for in situ laminar-flow-based comparative culturing of budding yeast cells.
    Zhu Z; Wang Y; Peng R; Chen P; Geng Y; He B; Ouyang S; Zheng K; Fan Y; Pan D; Jin N; Rudolf F; Hierlemann A
    Talanta; 2021 Aug; 231():122401. PubMed ID: 33965050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapping and releasing of single microparticles and cells in a microfluidic chip.
    Lv D; Zhang X; Xu M; Cao W; Liu X; Deng J; Yang J; Hu N
    Electrophoresis; 2022 Nov; 43(21-22):2165-2174. PubMed ID: 35730632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-efficiency microfluidic device for size-selective trapping and sorting.
    Kim J; Erath J; Rodriguez A; Yang C
    Lab Chip; 2014 Jul; 14(14):2480-90. PubMed ID: 24850190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells.
    Zhu Z; Frey O; Ottoz DS; Rudolf F; Hierlemann A
    Lab Chip; 2012 Mar; 12(5):906-15. PubMed ID: 22193373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays.
    Nguyen MA; Srijanto B; Collier CP; Retterer ST; Sarles SA
    Lab Chip; 2016 Sep; 16(18):3576-88. PubMed ID: 27513561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Low Shear Flow-based Trapping of Biological Entities.
    Sohrabi Kashani A; Packirisamy M
    Sci Rep; 2019 Apr; 9(1):5511. PubMed ID: 30940862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of geometry on dielectrophoretic trap stiffness in microparticle trapping.
    Rahman MRU; Kwak TJ; Woehl JC; Chang WJ
    Biomed Microdevices; 2021 Jun; 23(3):33. PubMed ID: 34185161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dynamic microarray device for paired bead-based analysis.
    Teshima T; Ishihara H; Iwai K; Adachi A; Takeuchi S
    Lab Chip; 2010 Sep; 10(18):2443-8. PubMed ID: 20697655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A lipobead microarray assembled by particle entrapment in a microfluidic obstacle course and used for the display of cell membrane receptors.
    Chen X; Shojaei-Zadeh S; Gilchrist ML; Maldarelli C
    Lab Chip; 2013 Aug; 13(15):3041-60. PubMed ID: 23748734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system.
    Esseling M; Holtmann F; Woerdemann M; Denz C
    Opt Express; 2010 Aug; 18(16):17404-11. PubMed ID: 20721127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameter screening in microfluidics based hydrodynamic single-cell trapping.
    Deng B; Li XF; Chen DY; You LD; Wang JB; Chen J
    ScientificWorldJournal; 2014; 2014():929163. PubMed ID: 25013872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectrophoretic microbead sorting using modular electrode design and capillary-driven microfluidics.
    Tirapu-Azpiroz J; Temiz Y; Delamarche E
    Biomed Microdevices; 2017 Oct; 19(4):95. PubMed ID: 29082438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature and trapping characterization of an acoustic trap with miniaturized integrated transducers--towards in-trap temperature regulation.
    Johansson L; Evander M; Lilliehorn T; Almqvist M; Nilsson J; Laurell T; Johansson S
    Ultrasonics; 2013 Jul; 53(5):1020-32. PubMed ID: 23497805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry.
    Yalikun Y; Ota N; Guo B; Tang T; Zhou Y; Lei C; Kobayashi H; Hosokawa Y; Li M; Enrique Muñoz H; Di Carlo D; Goda K; Tanaka Y
    Cytometry A; 2020 Sep; 97(9):909-920. PubMed ID: 31856398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.