These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34519406)

  • 1. DFT Analysis of Methane C-H Activation and Over-Oxidation by [Cu
    Panthi D; Adeyiga O; Odoh SO
    Chemphyschem; 2021 Dec; 22(24):2517-2525. PubMed ID: 34519406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane Over-Oxidation by Extra-Framework Copper-Oxo Active Sites of Copper-Exchanged Zeolites: Crucial Role of Traps for the Separated Methyl Group.
    Adeyiga O; Odoh SO
    Chemphyschem; 2021 Jun; 22(11):1101-1109. PubMed ID: 33786957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dioxygen Activation on Cu-MOR Zeolite: Theoretical Insights into the Formation of Cu
    Mahyuddin MH; Tanaka T; Staykov A; Shiota Y; Yoshizawa K
    Inorg Chem; 2018 Aug; 57(16):10146-10152. PubMed ID: 30091906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic cycle of the partial oxidation of methane to methanol over Cu-ZSM-5 revealed using DFT calculations.
    Yu X; Zhong L; Li S
    Phys Chem Chem Phys; 2021 Mar; 23(8):4963-4974. PubMed ID: 33621299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of Methane Chemical Potential for Its Conversion to Methanol on Cu-Exchanged Mordenite.
    Zheng J; Lee I; Khramenkova E; Wang M; Peng B; Gutiérrez OY; Fulton JL; Camaioni DM; Khare R; Jentys A; Haller GL; Pidko EA; Sanchez-Sanchez M; Lercher JA
    Chemistry; 2020 Jun; 26(34):7563-7567. PubMed ID: 32092206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction.
    Narsimhan K; Michaelis VK; Mathies G; Gunther WR; Griffin RG; Román-Leshkov Y
    J Am Chem Soc; 2015 Feb; 137(5):1825-32. PubMed ID: 25562431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts.
    Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K
    Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic Structure of the [Cu
    Vogiatzis KD; Li G; Hensen EJM; Gagliardi L; Pidko EA
    J Phys Chem C Nanomater Interfaces; 2017 Oct; 121(40):22295-22302. PubMed ID: 29051794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study.
    Yoshizawa K; Shiota Y
    J Am Chem Soc; 2006 Aug; 128(30):9873-81. PubMed ID: 16866545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of single and double active sites of Cu oxide clusters over the MFI zeolite for direct conversion of methane to methanol: DFT calculations.
    Nunthakitgoson W; Thivasasith A; Maihom T; Wattanakit C
    Phys Chem Chem Phys; 2021 Jan; 23(3):2500-2510. PubMed ID: 33465219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites.
    Groothaert MH; Smeets PJ; Sels BF; Jacobs PA; Schoonheydt RA
    J Am Chem Soc; 2005 Feb; 127(5):1394-5. PubMed ID: 15686370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation.
    Alayon EM; Nachtegaal M; Bodi A; Ranocchiari M; van Bokhoven JA
    Phys Chem Chem Phys; 2015 Mar; 17(12):7681-93. PubMed ID: 25732559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic Performance of a Dicopper-Oxo Complex for Methane Hydroxylation.
    Hori Y; Shiota Y; Tsuji T; Kodera M; Yoshizawa K
    Inorg Chem; 2018 Jan; 57(1):8-11. PubMed ID: 29249146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper-Oxo Active Sites for Methane C-H Activation in Zeolites: Molecular Understanding of Impact of Methane Hydroxylation on UV-Vis Spectra.
    Adeyiga O; Suleiman O; Odoh SO
    Inorg Chem; 2021 Jun; 60(12):8489-8499. PubMed ID: 34097398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of tyrosine residue in methane activation at the dicopper site of particulate methane monooxygenase: a density functional theory study.
    Shiota Y; Juhász G; Yoshizawa K
    Inorg Chem; 2013 Jul; 52(14):7907-17. PubMed ID: 23808646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity of Cu-Al-Oxo Extra-Framework Clusters for Selective Methane Oxidation on Cu-Exchanged Zeolites.
    Lee I; Lee MS; Tao L; Ikuno T; Khare R; Jentys A; Huthwelker T; Borca CN; Kalinko A; Gutiérrez OY; Govind N; Fulton JL; Hu JZ; Glezakou VA; Rousseau R; Sanchez-Sanchez M; Lercher JA
    JACS Au; 2021 Sep; 1(9):1412-1421. PubMed ID: 34604851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the reactivity of bis(mu-oxo)Cu(II)Cu(III) and Cu(III)Cu(III) species to methane.
    Shiota Y; Yoshizawa K
    Inorg Chem; 2009 Feb; 48(3):838-45. PubMed ID: 19113938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites.
    Dinh KT; Sullivan MM; Narsimhan K; Serna P; Meyer RJ; Dincă M; Román-Leshkov Y
    J Am Chem Soc; 2019 Jul; 141(29):11641-11650. PubMed ID: 31306002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic Definition of a Highly Reactive Site in Cu-CHA for Selective Methane Oxidation: Tuning a Mono-μ-Oxo Dicopper(II) Active Site for Reactivity.
    Rhoda HM; Plessers D; Heyer AJ; Bols ML; Schoonheydt RA; Sels BF; Solomon EI
    J Am Chem Soc; 2021 May; 143(19):7531-7540. PubMed ID: 33970624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane Activation by a Mononuclear Copper Active Site in the Zeolite Mordenite: Effect of Metal Nuclearity on Reactivity.
    Heyer AJ; Plessers D; Braun A; Rhoda HM; Bols ML; Hedman B; Hodgson KO; Schoonheydt RA; Sels BF; Solomon EI
    J Am Chem Soc; 2022 Oct; 144(42):19305-19316. PubMed ID: 36219763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.