These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 34519406)
21. Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods. Gabrienko AA; Yashnik SA; Kolganov AA; Sheveleva AM; Arzumanov SS; Fedin MV; Tuna F; Stepanov AG Inorg Chem; 2020 Feb; 59(3):2037-2050. PubMed ID: 31971794 [TBL] [Abstract][Full Text] [Related]
22. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Woertink JS; Smeets PJ; Groothaert MH; Vance MA; Sels BF; Schoonheydt RA; Solomon EI Proc Natl Acad Sci U S A; 2009 Nov; 106(45):18908-13. PubMed ID: 19864626 [TBL] [Abstract][Full Text] [Related]
23. Isothermal Cyclic Conversion of Methane into Methanol over Copper-Exchanged Zeolite at Low Temperature. Tomkins P; Mansouri A; Bozbag SE; Krumeich F; Park MB; Alayon EM; Ranocchiari M; van Bokhoven JA Angew Chem Int Ed Engl; 2016 Apr; 55(18):5467-71. PubMed ID: 27010863 [TBL] [Abstract][Full Text] [Related]
24. Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation. Vanelderen P; Snyder BE; Tsai ML; Hadt RG; Vancauwenbergh J; Coussens O; Schoonheydt RA; Sels BF; Solomon EI J Am Chem Soc; 2015 May; 137(19):6383-92. PubMed ID: 25914019 [TBL] [Abstract][Full Text] [Related]
25. Recent Progress in Direct Conversion of Methane to Methanol Over Copper-Exchanged Zeolites. Park MB; Park ED; Ahn WS Front Chem; 2019; 7():514. PubMed ID: 31380355 [TBL] [Abstract][Full Text] [Related]
26. The Effect of the Active-Site Structure on the Activity of Copper Mordenite in the Aerobic and Anaerobic Conversion of Methane into Methanol. Sushkevich VL; Palagin D; van Bokhoven JA Angew Chem Int Ed Engl; 2018 Jul; 57(29):8906-8910. PubMed ID: 29756661 [TBL] [Abstract][Full Text] [Related]
27. Speciation and Reactivity Control of Cu-Oxo Clusters via Extraframework Al in Mordenite for Methane Oxidation. Tao L; Khramenkova E; Lee I; Ikuno T; Khare R; Jentys A; Fulton JL; Kolganov AA; Pidko EA; Sanchez-Sanchez M; Lercher JA J Am Chem Soc; 2023 Aug; 145(32):17710-17719. PubMed ID: 37545395 [TBL] [Abstract][Full Text] [Related]
28. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Grundner S; Markovits MA; Li G; Tromp M; Pidko EA; Hensen EJ; Jentys A; Sanchez-Sanchez M; Lercher JA Nat Commun; 2015 Jun; 6():7546. PubMed ID: 26109507 [TBL] [Abstract][Full Text] [Related]
29. Comprehensive Theoretical View of the [Cu Stańczak A; Chalupský J; Rulíšek L; Straka M Chemphyschem; 2022 Jul; 23(14):e202200076. PubMed ID: 35532185 [TBL] [Abstract][Full Text] [Related]
30. Geometric and electronic structure of [{Cu(MeAN)}2(μ-η2:η2(O2(2-)))]2+ with an unusually long O-O bond: O-O bond weakening vs activation for reductive cleavage. Park GY; Qayyum MF; Woertink J; Hodgson KO; Hedman B; Narducci Sarjeant AA; Solomon EI; Karlin KD J Am Chem Soc; 2012 May; 134(20):8513-24. PubMed ID: 22571744 [TBL] [Abstract][Full Text] [Related]
31. Exploring the Impact of Active Site Structure on the Conversion of Methane to Methanol in Cu-Exchanged Zeolites. Göltl F; Bhandari S; Lebrón-Rodríguez EA; Gold JI; Hutton DJ; Zones SI; Hermans I; Dumesic JA; Mavrikakis M Angew Chem Int Ed Engl; 2024 Jun; 63(23):e202403179. PubMed ID: 38574295 [TBL] [Abstract][Full Text] [Related]
32. H Xu R; Liu N; Dai C; Li Y; Zhang J; Wu B; Yu G; Chen B Angew Chem Int Ed Engl; 2021 Jul; 60(30):16634-16640. PubMed ID: 33982395 [TBL] [Abstract][Full Text] [Related]
33. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature. Narsimhan K; Iyoki K; Dinh K; Román-Leshkov Y ACS Cent Sci; 2016 Jun; 2(6):424-9. PubMed ID: 27413787 [TBL] [Abstract][Full Text] [Related]
34. Framework Effects on Activation and Functionalisation of Methane in Zinc-Exchanged Zeolites. Shah MA; Raynes S; Apperley DC; Taylor RA Chemphyschem; 2020 Apr; 21(7):673-679. PubMed ID: 31774616 [TBL] [Abstract][Full Text] [Related]
35. Assessing the relative stability of copper oxide clusters as active sites of a CuMOR zeolite for methane to methanol conversion: size matters? Palagin D; Knorpp AJ; Pinar AB; Ranocchiari M; van Bokhoven JA Nanoscale; 2017 Jan; 9(3):1144-1153. PubMed ID: 28009911 [TBL] [Abstract][Full Text] [Related]
36. Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5. Smeets PJ; Hadt RG; Woertink JS; Vanelderen P; Schoonheydt RA; Sels BF; Solomon EI J Am Chem Soc; 2010 Oct; 132(42):14736-8. PubMed ID: 20923156 [TBL] [Abstract][Full Text] [Related]
37. Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities. Serrano-Plana J; Garcia-Bosch I; Company A; Costas M Acc Chem Res; 2015 Aug; 48(8):2397-406. PubMed ID: 26207342 [TBL] [Abstract][Full Text] [Related]
38. Catalytic conversion of methane to methanol using Cu-zeolites. Alayon EM; Nachtegaal M; Ranocchiari M; van Bokhoven JA Chimia (Aarau); 2012; 66(9):668-74. PubMed ID: 23211724 [TBL] [Abstract][Full Text] [Related]
39. Performance of density functional theory for describing hetero-metallic active-site motifs for methane-to-methanol conversion in metal-exchanged zeolites. Dandu NK; Adeyiga O; Panthi D; Bird SA; Odoh SO J Comput Chem; 2018 Dec; 39(32):2667-2678. PubMed ID: 30379335 [TBL] [Abstract][Full Text] [Related]