These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 34519478)
1. Revealing Ionic Signal Enhancement with Probe Grafting Density on the Outer Surface of Nanochannels. Liu T; Wu X; Xu H; Ma Q; Du Q; Yuan Q; Gao P; Xia F Anal Chem; 2021 Sep; 93(38):13054-13062. PubMed ID: 34519478 [TBL] [Abstract][Full Text] [Related]
2. Exponential Increase in an Ionic Signal: A Dominant Role of the Space Charge Effect on the Outer Surface of Nanochannels. Wu X; Li Y; Xu H; Chen Y; Mao H; Ma Q; Du Q; Gao P; Xia F Anal Chem; 2021 Oct; 93(40):13711-13718. PubMed ID: 34581576 [TBL] [Abstract][Full Text] [Related]
3. Revealing the Critical Role of Probe Grafting Density in Nanometric Confinement in Ionic Signal via an Experimental and Theoretical Study. Ma Q; Liu T; Xu R; Du Q; Gao P; Xia F Anal Chem; 2021 Feb; 93(4):1984-1990. PubMed ID: 33393771 [TBL] [Abstract][Full Text] [Related]
4. Ionic Signal Enhancement by the Space Charge Effect through the DNA Rolling Circle Amplification on the Outer Surface of Nanochannels. Wu X; Che C; Wang X; Du Q; Liang H; Gao P; Xia F Anal Chem; 2021 Dec; 93(48):16043-16050. PubMed ID: 34807570 [TBL] [Abstract][Full Text] [Related]
5. Synergistic Effect of Bio-Inspired Nanochannels: Hydrophilic DNA Probes at Inner Wall and Hydrophobic Coating at Outer Surface for Highly Sensitive Detection. Liu L; Luo C; Zhang J; He X; Shen Y; Yan B; Huang Y; Xia F; Jiang L Small; 2022 Sep; 18(37):e2201925. PubMed ID: 35980948 [TBL] [Abstract][Full Text] [Related]
6. Outer-Surface Functionalized Solid-State Nanochannels for Enhanced Sensing Properties: Progress and Perspective. Dai L; Zhang WQ; Ding D; Luo C; Jiang L; Huang Y; Xia F ACS Nano; 2024 Mar; 18(11):7677-7687. PubMed ID: 38450654 [TBL] [Abstract][Full Text] [Related]
7. Exploring the contribution of charged species at the outer surface to the ion current signal of nanopores: a theoretical study. Mao H; Ma Q; Xu H; Xu L; Du Q; Gao P; Xia F Analyst; 2021 Aug; 146(16):5089-5094. PubMed ID: 34297030 [TBL] [Abstract][Full Text] [Related]
8. Metal-Organic Framework-Decorated Nanochannel Electrode: Integration of Internal Nanoconfined Space and Outer Surface for Small-Molecule Sensing. Ma X; Li Y; Zhang J; Ma T; Zhang L; Chen Y; Ying Y; Fu Y ACS Appl Mater Interfaces; 2023 Jun; 15(22):27034-27045. PubMed ID: 37232292 [TBL] [Abstract][Full Text] [Related]
10. Towards explicit regulating-ion-transport: nanochannels with only function-elements at outer-surface. Ma Q; Li Y; Wang R; Xu H; Du Q; Gao P; Xia F Nat Commun; 2021 Mar; 12(1):1573. PubMed ID: 33692350 [TBL] [Abstract][Full Text] [Related]
11. Biomolecule-Functionalized Solid-State Ion Nanochannels/Nanopores: Features and Techniques. Ding D; Gao P; Ma Q; Wang D; Xia F Small; 2019 Aug; 15(32):e1804878. PubMed ID: 30756522 [TBL] [Abstract][Full Text] [Related]
12. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels. Lu J; Jiang Y; Yu P; Jiang W; Mao L Chem Asian J; 2022 May; 17(10):e202200158. PubMed ID: 35324076 [TBL] [Abstract][Full Text] [Related]
13. Label-free electrochemiluminescence detection of specific-sequence DNA based on DNA probes capped ion nanochannels. Xiong H; Zheng X Analyst; 2014 Apr; 139(7):1732-9. PubMed ID: 24527488 [TBL] [Abstract][Full Text] [Related]
14. Sequence-specific recognition of DNA oligomer using peptide nucleic acid (PNA)-modified synthetic ion channels: PNA/DNA hybridization in nanoconfined environment. Ali M; Neumann R; Ensinger W ACS Nano; 2010 Dec; 4(12):7267-74. PubMed ID: 21082785 [TBL] [Abstract][Full Text] [Related]
15. Regional and functional division of functional elements of solid-state nanochannels for enhanced sensitivity and specificity of biosensing in complex matrices. Gao P; Wang D; Che C; Ma Q; Wu X; Chen Y; Xu H; Li X; Lin Y; Ding D; Lou X; Xia F Nat Protoc; 2021 Sep; 16(9):4201-4226. PubMed ID: 34321637 [TBL] [Abstract][Full Text] [Related]
16. How Does Confinement Change Ligand-Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels. Tagliazucchi M; Szleifer I J Am Chem Soc; 2015 Oct; 137(39):12539-51. PubMed ID: 26368839 [TBL] [Abstract][Full Text] [Related]
17. Patchable, flexible heat-sensing hybrid ionic gate nanochannel modified with a wax-composite. Chun KY; Choi W; Roh SC; Han CS Nanoscale; 2015 Aug; 7(29):12427-34. PubMed ID: 26130272 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic nanochannels based biosensor for ultrasensitive and label-free detection of nucleic acids. Sun Z; Liao T; Zhang Y; Shu J; Zhang H; Zhang GJ Biosens Bioelectron; 2016 Dec; 86():194-201. PubMed ID: 27372572 [TBL] [Abstract][Full Text] [Related]
19. Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification. Khatibi M; Ashrafizadeh SN; Sadeghi A Anal Chim Acta; 2020 Jul; 1122():48-60. PubMed ID: 32503743 [TBL] [Abstract][Full Text] [Related]
20. Renormalization of Ionic Solvation Shells in Nanochannels. Zhou K; Xu Z ACS Appl Mater Interfaces; 2018 Aug; 10(33):27801-27809. PubMed ID: 30058329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]