BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 34519969)

  • 1. Mitochondrial Abnormalities and Synaptic Damage in Huntington's Disease: a Focus on Defective Mitophagy and Mitochondria-Targeted Therapeutics.
    Sawant N; Morton H; Kshirsagar S; Reddy AP; Reddy PH
    Mol Neurobiol; 2021 Dec; 58(12):6350-6377. PubMed ID: 34519969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease.
    Reddy PH; Shirendeb UP
    Biochim Biophys Acta; 2012 Feb; 1822(2):101-10. PubMed ID: 22080977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Phosphorylated Tau and Glucose Synthase Kinase 3 Beta in Huntington's Disease Progression.
    Sawant N; Reddy PH
    J Alzheimers Dis; 2019; 72(s1):S177-S191. PubMed ID: 31744007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease.
    Shirendeb UP; Calkins MJ; Manczak M; Anekonda V; Dufour B; McBride JL; Mao P; Reddy PH
    Hum Mol Genet; 2012 Jan; 21(2):406-20. PubMed ID: 21997870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PINK1-induced mitophagy promotes neuroprotection in Huntington's disease.
    Khalil B; El Fissi N; Aouane A; Cabirol-Pol MJ; Rival T; Liévens JC
    Cell Death Dis; 2015 Jan; 6(1):e1617. PubMed ID: 25611391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-nitrosylation of dynamin-related protein 1 mediates mutant huntingtin-induced mitochondrial fragmentation and neuronal injury in Huntington's disease.
    Haun F; Nakamura T; Shiu AD; Cho DH; Tsunemi T; Holland EA; La Spada AR; Lipton SA
    Antioxid Redox Signal; 2013 Oct; 19(11):1173-84. PubMed ID: 23641925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial dynamics and quality control in Huntington's disease.
    Guedes-Dias P; Pinho BR; Soares TR; de Proença J; Duchen MR; Oliveira JM
    Neurobiol Dis; 2016 Jun; 90():51-7. PubMed ID: 26388396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drp1/Fis1-mediated mitochondrial fragmentation leads to lysosomal dysfunction in cardiac models of Huntington's disease.
    Joshi AU; Ebert AE; Haileselassie B; Mochly-Rosen D
    J Mol Cell Cardiol; 2019 Feb; 127():125-133. PubMed ID: 30550751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitophagy in Huntington's disease.
    Šonský I; Vodička P; Vodičková Kepková K; Hansíková H
    Neurochem Int; 2021 Oct; 149():105147. PubMed ID: 34329735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington's disease.
    Yin X; Manczak M; Reddy PH
    Hum Mol Genet; 2016 May; 25(9):1739-53. PubMed ID: 26908605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial structural and functional dynamics in Huntington's disease.
    Reddy PH; Mao P; Manczak M
    Brain Res Rev; 2009 Jun; 61(1):33-48. PubMed ID: 19394359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage.
    Shirendeb U; Reddy AP; Manczak M; Calkins MJ; Mao P; Tagle DA; Reddy PH
    Hum Mol Genet; 2011 Apr; 20(7):1438-55. PubMed ID: 21257639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial bioenergetics and dynamics in Huntington's disease: tripartite synapses and selective striatal degeneration.
    Oliveira JM
    J Bioenerg Biomembr; 2010 Jun; 42(3):227-34. PubMed ID: 20454921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model.
    Wu J; Ryskamp DA; Liang X; Egorova P; Zakharova O; Hung G; Bezprozvanny I
    J Neurosci; 2016 Jan; 36(1):125-41. PubMed ID: 26740655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum.
    Oliveira JM
    J Neurochem; 2010 Jul; 114(1):1-12. PubMed ID: 20403078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration in models of Huntington's disease.
    Guo X; Sun X; Hu D; Wang YJ; Fujioka H; Vyas R; Chakrapani S; Joshi AU; Luo Y; Mochly-Rosen D; Qi X
    Nat Commun; 2016 Aug; 7():12646. PubMed ID: 27561680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington's disease.
    Chen CM
    Chang Gung Med J; 2011; 34(2):135-52. PubMed ID: 21539755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered anterograde axonal transport of mitochondria in cultured striatal neurons of a knock-in mouse model of Huntington's disease.
    Wu C; Yin H; Fu S; Yoo H; Zhang M; Park H
    Biochem Biophys Res Commun; 2024 Jan; 691():149246. PubMed ID: 38029540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased mitochondrial fission and neuronal dysfunction in Huntington's disease: implications for molecular inhibitors of excessive mitochondrial fission.
    Reddy PH
    Drug Discov Today; 2014 Jul; 19(7):951-5. PubMed ID: 24681059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Huntington's Disease and Mitochondria.
    Jodeiri Farshbaf M; Ghaedi K
    Neurotox Res; 2017 Oct; 32(3):518-529. PubMed ID: 28639241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.