These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34519989)

  • 21. Robust optimization of uncertainty-based preventive maintenance model for scheduling series-parallel production systems (real case: disposable appliances production).
    Gholizadeh H; Chaleshigar M; Fazlollahtabar H
    ISA Trans; 2022 Sep; 128(Pt B):54-67. PubMed ID: 34973689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling municipal solid waste management system under uncertainty.
    Li Y; Huang G
    J Air Waste Manag Assoc; 2010 Apr; 60(4):439-53. PubMed ID: 20437779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of life-cycle analysis to support solid waste management planning for Delaware.
    Kaplan PO; Ranjithan SR; Barlaz MA
    Environ Sci Technol; 2009 Mar; 43(5):1264-70. PubMed ID: 19350889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Effective Cooperative Co-Evolutionary Algorithm for Distributed Flowshop Group Scheduling Problems.
    Pan QK; Gao L; Wang L
    IEEE Trans Cybern; 2022 Jul; 52(7):5999-6012. PubMed ID: 33373315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic exploration of efficient strategies to manage solid waste in U.S. municipalities: perspectives from the solid waste optimization life-cycle framework (SWOLF).
    Levis JW; Barlaz MA; Decarolis JF; Ranjithan SR
    Environ Sci Technol; 2014 Apr; 48(7):3625-31. PubMed ID: 24601652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloud-based decision framework for waste-to-energy plant site selection - A case study from China.
    Wu Y; Chen K; Zeng B; Yang M; Geng S
    Waste Manag; 2016 Feb; 48():593-603. PubMed ID: 26639410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intelligent Decision-Making of Scheduling for Dynamic Permutation Flowshop via Deep Reinforcement Learning.
    Yang S; Xu Z; Wang J
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33540868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interval linear programming model for long-term planning of vehicle recycling in the Republic of Serbia under uncertainty.
    Simic V; Dimitrijevic B
    Waste Manag Res; 2015 Feb; 33(2):114-29. PubMed ID: 25649401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid particle swarm optimization for hybrid flowshop scheduling problem with maintenance activities.
    Li JQ; Pan QK; Mao K
    ScientificWorldJournal; 2014; 2014():596850. PubMed ID: 24883414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of an Appropriate Uncertainty Model with an Application to Solid Waste Management Planning.
    Abd Elazeem AEM; El-Wahed Khalifa HA; Pamucar D; Kacem AH; Afifi WA
    Comput Intell Neurosci; 2022; 2022():6988306. PubMed ID: 35685138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An interval-parameter stochastic robust optimization model for supporting municipal solid waste management under uncertainty.
    Xu Y; Huang GH; Qin XS; Cao MF; Sun Y
    Waste Manag; 2010 Feb; 30(2):316-27. PubMed ID: 19900798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparing Waste-to-Energy technologies by applying energy system analysis.
    Münster M; Lund H
    Waste Manag; 2010 Jul; 30(7):1251-63. PubMed ID: 19700298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.
    Toshiki K; Giang PQ; Serrona KR; Sekikawa T; Yu JS; Choijil B; Kunikane S
    J Environ Sci (China); 2015 Feb; 28():178-86. PubMed ID: 25662253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A robust fuzzy multi-objective programming model to design a sustainable hospital waste management network considering resiliency and uncertainty: A case study.
    Negarandeh R; Tajdin A
    Waste Manag Res; 2022 Apr; 40(4):439-457. PubMed ID: 34407709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Landfill space consumption dynamics in the Lower Rio Grande Valley by grey integer programming-based games.
    Davila E; Chang NB; Diwakaruni S
    J Environ Manage; 2005 Jun; 75(4):353-65. PubMed ID: 15854728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Managing the uncertainty problems of municipal solid waste disposal.
    Singh A
    J Environ Manage; 2019 Jun; 240():259-265. PubMed ID: 30952046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reverse Logistics Network Design for Effective Management of Medical Waste in Epidemic Outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan (China).
    Yu H; Sun X; Solvang WD; Zhao X
    Int J Environ Res Public Health; 2020 Mar; 17(5):. PubMed ID: 32182811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radioactive waste management and decommissioning of accelerator facilities.
    Ulrici L; Magistris M
    Radiat Prot Dosimetry; 2009 Nov; 137(1-2):138-48. PubMed ID: 19783840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stochastic modelling of landfill leachate and biogas production incorporating waste heterogeneity. Model formulation and uncertainty analysis.
    Zacharof AI; Butler AP
    Waste Manag; 2004; 24(5):453-62. PubMed ID: 15120429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GHG emission control and solid waste management for megacities with inexact inputs: a case study in Beijing, China.
    Lu H; Sun S; Ren L; He L
    J Hazard Mater; 2015 Mar; 284():92-102. PubMed ID: 25463222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.