BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34520013)

  • 1. Fabrication and Use of a Pumpless Microfluidic Lymphatic Vessel Chip.
    Fathi P; Esch MB
    Methods Mol Biol; 2022; 2373():177-199. PubMed ID: 34520013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pumpless microfluidic devices for generating healthy and diseased endothelia.
    Yang Y; Fathi P; Holland G; Pan D; Wang NS; Esch MB
    Lab Chip; 2019 Sep; 19(19):3212-3219. PubMed ID: 31455960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems.
    Wang YI; Shuler ML
    Lab Chip; 2018 Aug; 18(17):2563-2574. PubMed ID: 30046784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unlocking the Potential of Organ-on-Chip Models through Pumpless and Tubeless Microfluidics.
    Delon LC; Nilghaz A; Cheah E; Prestidge C; Thierry B
    Adv Healthc Mater; 2020 Jun; 9(11):e1901784. PubMed ID: 32342669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pumped and pumpless microphysiological systems to study (nano)therapeutics.
    Lee EJ; Krassin ZL; Abaci HE; Mahler GJ; Esch MB
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1911. PubMed ID: 37464464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pumpless microfluidic device with open top cell culture under oscillatory shear stress.
    Chen Z; Zilberberg J; Lee W
    Biomed Microdevices; 2020 Aug; 22(3):58. PubMed ID: 32833129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pneumatic pressure-driven multi-throughput microfluidic circulation culture system.
    Satoh T; Narazaki G; Sugita R; Kobayashi H; Sugiura S; Kanamori T
    Lab Chip; 2016 Jun; 16(12):2339-48. PubMed ID: 27229626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pumpless microfluidic system driven by hydrostatic pressure induces and maintains mouse spermatogenesis in vitro.
    Komeya M; Hayashi K; Nakamura H; Yamanaka H; Sanjo H; Kojima K; Sato T; Yao M; Kimura H; Fujii T; Ogawa T
    Sci Rep; 2017 Nov; 7(1):15459. PubMed ID: 29133858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lymphangion-chip: a microphysiological system which supports co-culture and bidirectional signaling of lymphatic endothelial and muscle cells.
    Selahi A; Fernando T; Chakraborty S; Muthuchamy M; Zawieja DC; Jain A
    Lab Chip; 2021 Dec; 22(1):121-135. PubMed ID: 34850797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lymphatic Vessel on a Chip with Capability for Exposure to Cyclic Fluidic Flow.
    Fathi P; Holland G; Pan D; Esch MB
    ACS Appl Bio Mater; 2020 Oct; 3(10):6697-6707. PubMed ID: 35019335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pump-less, recirculating organ-on-a-chip (rOoC) platform.
    Busek M; Aizenshtadt A; Koch T; Frank A; Delon L; Martinez MA; Golovin A; Dumas C; Stokowiec J; Gruenzner S; Melum E; Krauss S
    Lab Chip; 2023 Feb; 23(4):591-608. PubMed ID: 36655405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips.
    Vivas A; van den Berg A; Passier R; Odijk M; van der Meer AD
    Lab Chip; 2022 Mar; 22(6):1231-1243. PubMed ID: 35178541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Lung Small Airway-on-a-Chip Protocol.
    Benam KH; Mazur M; Choe Y; Ferrante TC; Novak R; Ingber DE
    Methods Mol Biol; 2017; 1612():345-365. PubMed ID: 28634955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gravity-driven microfluidic device placed on a slow-tilting table enables constant unidirectional perfusion culture of human induced pluripotent stem cells.
    Limjanthong N; Tohbaru Y; Okamoto T; Okajima R; Kusama Y; Kojima H; Fujimura A; Miyazaki T; Kanamori T; Sugiura S; Ohnuma K
    J Biosci Bioeng; 2023 Feb; 135(2):151-159. PubMed ID: 36586792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and demonstration of a pumpless 14 compartment microphysiological system.
    Miller PG; Shuler ML
    Biotechnol Bioeng; 2016 Oct; 113(10):2213-27. PubMed ID: 27070809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the Effectiveness of
    Kim K; Jeon HM; Choi KC; Sung GY
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelialization of PDMS-based microfluidic devices under high shear stress conditions.
    Siddique A; Pause I; Narayan S; Kruse L; Stark RW
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111394. PubMed ID: 33075662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.