These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34520360)

  • 1. A Novel Method for Inferring Chemical Compounds With Prescribed Topological Substructures Based on Integer Programming.
    Zhu J; Azam NA; Zhang F; Shurbevski A; Haraguchi K; Zhao L; Nagamochi H; Akutsu T
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3233-3245. PubMed ID: 34520360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method for inference of acyclic chemical compounds with bounded branch-height based on artificial neural networks and integer programming.
    Azam NA; Zhu J; Sun Y; Shi Y; Shurbevski A; Zhao L; Nagamochi H; Akutsu T
    Algorithms Mol Biol; 2021 Aug; 16(1):18. PubMed ID: 34391471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Inverse QSAR Method Based on Linear Regression and Integer Programming.
    Zhu J; Azam NA; Haraguchi K; Zhao L; Nagamochi H; Akutsu T
    Front Biosci (Landmark Ed); 2022 Jun; 27(6):188. PubMed ID: 35748264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Inverse QSAR Method Based on a Two-Layered Model and Integer Programming.
    Shi Y; Zhu J; Azam NA; Haraguchi K; Zhao L; Nagamochi H; Akutsu T
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient enumeration of monocyclic chemical graphs with given path frequencies.
    Suzuki M; Nagamochi H; Akutsu T
    J Cheminform; 2014; 6():31. PubMed ID: 24955135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual graph convolutional neural network for predicting chemical networks.
    Harada S; Akita H; Tsubaki M; Baba Y; Takigawa I; Yamanishi Y; Kashima H
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):94. PubMed ID: 32321421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Design Based on Integer Programming and Splitting Data Sets by Hyperplanes.
    Zhu J; Azam NA; Haraguchi K; Zhao L; Nagamochi H; Akutsu T
    IEEE/ACM Trans Comput Biol Bioinform; 2024 May; PP():. PubMed ID: 38767997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resource Cut, a New Bounding Procedure to Algorithms for Enumerating Tree-Like Chemical Graphs.
    Nishiyama Y; Shurbevski A; Nagamochi H; Akutsu T
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):77-90. PubMed ID: 29994050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enumerating tree-like chemical graphs with given upper and lower bounds on path frequencies.
    Shimizu M; Nagamochi H; Akutsu T
    BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S3. PubMed ID: 22373441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Boolean metabolic networks: integer linear programming based approach.
    Qiu Y; Jiang H; Ching WK; Cheng X
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):7. PubMed ID: 29671395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient enumeration of stereoisomers of outerplanar chemical graphs using dynamic programming.
    Imada T; Ota S; Nagamochi H; Akutsu T
    J Chem Inf Model; 2011 Nov; 51(11):2788-807. PubMed ID: 21848281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph Traversal Edit Distance and Extensions.
    Ebrahimpour Boroojeny A; Shrestha A; Sharifi-Zarchi A; Gallagher SR; Sahinalp SC; Chitsaz H
    J Comput Biol; 2020 Mar; 27(3):317-329. PubMed ID: 32058803
    [No Abstract]   [Full Text] [Related]  

  • 13. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming.
    Song HS; Goldberg N; Mahajan A; Ramkrishna D
    Bioinformatics; 2017 Aug; 33(15):2345-2353. PubMed ID: 28369193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enumerating Substituted Benzene Isomers of Tree-Like Chemical Graphs.
    Li J; Nagamochi H; Akutsu T
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):633-646. PubMed ID: 28113952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method.
    Wu Z; Jiang D; Hsieh CY; Chen G; Liao B; Cao D; Hou T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph kernels combined with the neural network on protein classification.
    Qiangrong J; Guang Q
    J Bioinform Comput Biol; 2019 Oct; 17(5):1950030. PubMed ID: 31856667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.
    Zhang H; Huang Q; Bei Z; Wei Y; Floudas CA
    Proteins; 2016 Mar; 84(3):332-48. PubMed ID: 26756402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases.
    Scherer P; Trębacz M; Simidjievski N; Viñas R; Shams Z; Terre HA; Jamnik M; Liò P
    Bioinformatics; 2022 Feb; 38(5):1320-1327. PubMed ID: 34888618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mixed integer linear programming (MILP) framework for inferring time delay in gene regulatory networks.
    Dasika MS; Gupta A; Maranas CD
    Pac Symp Biocomput; 2004; ():474-85. PubMed ID: 14992526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution to dynamic economic dispatch with prohibited operating zones via MILP.
    Pan S; Jian J; Yang L
    Math Biosci Eng; 2022 Apr; 19(7):6455-6468. PubMed ID: 35730266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.