These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34520367)

  • 1. Deductive Reinforcement Learning for Visual Autonomous Urban Driving Navigation.
    Huang C; Zhang R; Ouyang M; Wei P; Lin J; Su J; Lin L
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5379-5391. PubMed ID: 34520367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Reinforcement Learning on Autonomous Driving Policy With Auxiliary Critic Network.
    Wu Y; Liao S; Liu X; Li Z; Lu R
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3680-3690. PubMed ID: 34669579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm.
    Ashraf NM; Mostafa RR; Sakr RH; Rashad MZ
    PLoS One; 2021; 16(6):e0252754. PubMed ID: 34111168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driven by Vision: Learning Navigation by Visual Localization and Trajectory Prediction.
    Leordeanu M; Paraicu I
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33514019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Supervised Discovering of Interpretable Features for Reinforcement Learning.
    Shi W; Huang G; Song S; Wang Z; Lin T; Wu C
    IEEE Trans Pattern Anal Mach Intell; 2022 May; 44(5):2712-2724. PubMed ID: 33186101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing driving behavior of humans and autonomous driving in a professional racing simulator.
    Remonda A; Veas E; Luzhnica G
    PLoS One; 2021; 16(2):e0245320. PubMed ID: 33534848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Masked Contrastive Representation Learning for Reinforcement Learning.
    Zhu J; Xia Y; Wu L; Deng J; Zhou W; Qin T; Liu TY; Li H
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3421-3433. PubMed ID: 35594229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcement Learning-Based Autonomous Driving at Intersections in CARLA Simulator.
    Gutiérrez-Moreno R; Barea R; López-Guillén E; Araluce J; Bergasa LM
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomous Driving Control Based on the Technique of Semantic Segmentation.
    Tsai J; Chang CC; Li T
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving efficient interpretability of reinforcement learning via policy distillation and selective input gradient regularization.
    Xing J; Nagata T; Zou X; Neftci E; Krichmar JL
    Neural Netw; 2023 Apr; 161():228-241. PubMed ID: 36774862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Deep Reinforcement Learning With Imitative Expert Priors for Autonomous Driving.
    Huang Z; Wu J; Lv C
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7391-7403. PubMed ID: 35081030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Editorial Special Issue on Deep Reinforcement Learning and Adaptive Dynamic Programming.
    Zhao D; Liu D; Lewis FL; Principe JC; Squartin S
    IEEE Trans Neural Netw Learn Syst; 2018 May; ():. PubMed ID: 29993895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Playing Atari with few neurons: Improving the efficacy of reinforcement learning by decoupling feature extraction and decision making.
    Cuccu G; Togelius J; Cudré-Mauroux P
    Auton Agent Multi Agent Syst; 2021; 35(2):17. PubMed ID: 34720684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vision-Language Navigation Policy Learning and Adaptation.
    Wang X; Huang Q; Celikyilmaz A; Gao J; Shen D; Wang YF; Wang WY; Zhang L
    IEEE Trans Pattern Anal Mach Intell; 2021 Dec; 43(12):4205-4216. PubMed ID: 32054568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perception and Navigation in Autonomous Systems in the Era of Learning: A Survey.
    Tang Y; Zhao C; Wang J; Zhang C; Sun Q; Zheng WX; Du W; Qian F; Kurths J
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):9604-9624. PubMed ID: 35482692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Goal-Directed Navigation Through Combining Learning Based Global and Local Planners.
    Zhou X; Gao Y; Guan L
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decision-Making for the Autonomous Navigation of Maritime Autonomous Surface Ships Based on Scene Division and Deep Reinforcement Learning.
    Zhang X; Wang C; Liu Y; Chen X
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcement learning algorithms for robotic navigation in dynamic environments.
    Yen GG; Hickey TW
    ISA Trans; 2004 Apr; 43(2):217-30. PubMed ID: 15098582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.