These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34520384)

  • 1. Hierarchical Motion Learning for Goal-Oriented Movements With Speed-Accuracy Tradeoff of a Musculoskeletal System.
    Zhou J; Zhong S; Wu W
    IEEE Trans Cybern; 2022 Nov; 52(11):11453-11466. PubMed ID: 34520384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning.
    Denizdurduran B; Markram H; Gewaltig MO
    Biol Cybern; 2022 Dec; 116(5-6):711-726. PubMed ID: 35951117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-fidelity musculoskeletal modeling reveals that motor planning variability contributes to the speed-accuracy tradeoff.
    Al Borno M; Vyas S; Shenoy KV; Delp SL
    Elife; 2020 Dec; 9():. PubMed ID: 33325369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Rough to Precise: Human-Inspired Phased Target Learning Framework for Redundant Musculoskeletal Systems.
    Zhou J; Chen J; Deng H; Qiao H
    Front Neurorobot; 2019; 13():61. PubMed ID: 31417392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociable mechanisms of speed-accuracy tradeoff during visual perceptual learning are revealed by a hierarchical drift-diffusion model.
    Zhang J; Rowe JB
    Front Neurosci; 2014; 8():69. PubMed ID: 24782701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Daily modulation of the speed-accuracy trade-off.
    Gueugneau N; Pozzo T; Darlot C; Papaxanthis C
    Neuroscience; 2017 Jul; 356():142-150. PubMed ID: 28499976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-joint coupling and joint angle synergies of human catching movements.
    Bockemühl T; Troje NF; Dürr V
    Hum Mov Sci; 2010 Feb; 29(1):73-93. PubMed ID: 19945187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pointing with the ankle: the speed-accuracy trade-off.
    Michmizos KP; Krebs HI
    Exp Brain Res; 2014 Feb; 232(2):647-57. PubMed ID: 24271402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction time and movement duration influence on end point accuracy in a fast reaching task.
    Skurvidas A; Mickevichiene D; Cesnavichiene V; Gutnik B; Nash D
    Fiziol Cheloveka; 2012; 38(3):73-80. PubMed ID: 22830246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement learning coupled with finite element modeling for facial motion learning.
    Nguyen DP; Ho Ba Tho MC; Dao TT
    Comput Methods Programs Biomed; 2022 Jun; 221():106904. PubMed ID: 35636356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of biomechanical factors on substructure of pointing movements.
    Dounskaia N; Wisleder D; Johnson T
    Exp Brain Res; 2005 Aug; 164(4):505-16. PubMed ID: 15856206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamics of human isometric pointing movements under varying accuracy requirements.
    Billon M; Bootsma RJ; Mottet D
    Neurosci Lett; 2000 May; 286(1):49-52. PubMed ID: 10822150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and validation of a general purpose robotic testing system for musculoskeletal applications.
    Noble LD; Colbrunn RW; Lee DG; van den Bogert AJ; Davis BL
    J Biomech Eng; 2010 Feb; 132(2):025001. PubMed ID: 20370251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extending Fitts' Law to three-dimensional obstacle-avoidance movements: support for the posture-based motion planning model.
    Vaughan J; Barany DA; Sali AW; Jax SA; Rosenbaum DA
    Exp Brain Res; 2010 Nov; 207(1-2):133-8. PubMed ID: 20931178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A musculoskeletal model driven by muscle synergy-derived excitations for hand and wrist movements.
    Zhao J; Yu Y; Wang X; Ma S; Sheng X; Zhu X
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 34986472
    [No Abstract]   [Full Text] [Related]  

  • 18. Speed-accuracy trade-off in planned arm movements with delayed feedback.
    Beamish D; Scott Mackenzie I; Wu J
    Neural Netw; 2006 Jun; 19(5):582-99. PubMed ID: 16797920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Gain-Modulated Recurrent Neural Network for Controlling Musculoskeletal Robot.
    Zhong S; Zhou J; Qiao H
    IEEE Trans Neural Netw Learn Syst; 2021 Apr; PP():. PubMed ID: 33861712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotics-based synthesis of human motion.
    Khatib O; Demircan E; De Sapio V; Sentis L; Besier T; Delp S
    J Physiol Paris; 2009; 103(3-5):211-9. PubMed ID: 19665552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.