These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 34520508)

  • 1. Which deep learning model can best explain object representations of within-category exemplars?
    Lee D
    J Vis; 2021 Sep; 21(10):12. PubMed ID: 34520508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.
    Jozwik KM; Kriegeskorte N; Storrs KR; Mur M
    Front Psychol; 2017; 8():1726. PubMed ID: 29062291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Neural Networks and Visuo-Semantic Models Explain Complementary Components of Human Ventral-Stream Representational Dynamics.
    Jozwik KM; Kietzmann TC; Cichy RM; Kriegeskorte N; Mur M
    J Neurosci; 2023 Mar; 43(10):1731-1741. PubMed ID: 36759190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating and measuring variation in deep neural network (DNN) representations of objects.
    Chow JK; Palmeri TJ
    Cognition; 2024 Nov; 252():105920. PubMed ID: 39163818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representational Content of Oscillatory Brain Activity during Object Recognition: Contrasting Cortical and Deep Neural Network Hierarchies.
    Reddy L; Cichy RM; VanRullen R
    eNeuro; 2021; 8(3):. PubMed ID: 33903182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Within-category representational stability through the lens of manipulable objects.
    Lee D; Almeida J
    Cortex; 2021 Apr; 137():282-291. PubMed ID: 33662692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal deep neural decoding reveals highly resolved spatiotemporal profile of visual object representation in humans.
    Watanabe N; Miyoshi K; Jimura K; Shimane D; Keerativittayayut R; Nakahara K; Takeda M
    Neuroimage; 2023 Jul; 275():120164. PubMed ID: 37169115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Neural Networks for Modeling Visual Perceptual Learning.
    Wenliang LK; Seitz AR
    J Neurosci; 2018 Jul; 38(27):6028-6044. PubMed ID: 29793979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in understanding object recognition in the human brain: deep neural networks, temporal dynamics, and context.
    Wardle SG; Baker C
    F1000Res; 2020; 9():. PubMed ID: 32566136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse Deep Neural Networks All Predict Human Inferior Temporal Cortex Well, After Training and Fitting.
    Storrs KR; Kietzmann TC; Walther A; Mehrer J; Kriegeskorte N
    J Cogn Neurosci; 2021 Sep; 33(10):2044-2064. PubMed ID: 34272948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can machine learning account for human visual object shape similarity judgments?
    German JS; Jacobs RA
    Vision Res; 2020 Feb; 167():87-99. PubMed ID: 31972448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.
    Jang H; Plis SM; Calhoun VD; Lee JH
    Neuroimage; 2017 Jan; 145(Pt B):314-328. PubMed ID: 27079534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using drawings and deep neural networks to characterize the building blocks of human visual similarity.
    Mukherjee K; Rogers TT
    Mem Cognit; 2024 May; ():. PubMed ID: 38814385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep supervised, but not unsupervised, models may explain IT cortical representation.
    Khaligh-Razavi SM; Kriegeskorte N
    PLoS Comput Biol; 2014 Nov; 10(11):e1003915. PubMed ID: 25375136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Neural Networks as a Computational Model for Human Shape Sensitivity.
    Kubilius J; Bracci S; Op de Beeck HP
    PLoS Comput Biol; 2016 Apr; 12(4):e1004896. PubMed ID: 27124699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep neural networks rival the representation of primate IT cortex for core visual object recognition.
    Cadieu CF; Hong H; Yamins DL; Pinto N; Ardila D; Solomon EA; Majaj NJ; DiCarlo JJ
    PLoS Comput Biol; 2014 Dec; 10(12):e1003963. PubMed ID: 25521294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exemplar learning reveals the representational origins of expert category perception.
    Collins E; Behrmann M
    Proc Natl Acad Sci U S A; 2020 May; 117(20):11167-11177. PubMed ID: 32366664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual differences among deep neural network models.
    Mehrer J; Spoerer CJ; Kriegeskorte N; Kietzmann TC
    Nat Commun; 2020 Nov; 11(1):5725. PubMed ID: 33184286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-optimized deep neural network models of human visual areas learn non-hierarchical representations.
    St-Yves G; Allen EJ; Wu Y; Kay K; Naselaris T
    Nat Commun; 2023 Jun; 14(1):3329. PubMed ID: 37286563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of deep neural network features by decodability from human brain activity.
    Horikawa T; Aoki SC; Tsukamoto M; Kamitani Y
    Sci Data; 2019 Feb; 6():190012. PubMed ID: 30747910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.