These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34520991)

  • 1. Model-based data augmentation for user-independent fatigue estimation.
    Jiang Y; Malliaras P; Chen B; Kulić D
    Comput Biol Med; 2021 Oct; 137():104839. PubMed ID: 34520991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time forecasting of exercise-induced fatigue from wearable sensors.
    Jiang Y; Malliaras P; Chen B; Kulić D
    Comput Biol Med; 2022 Sep; 148():105905. PubMed ID: 35905661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Data-Driven Approach to Predict Fatigue in Exercise Based on Motion Data from Wearable Sensors or Force Plate.
    Jiang Y; Hernandez V; Venture G; Kulić D; K Chen B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Data Augmentation on the Nine-Axis IMU-Based Orientation Estimation Accuracy of a Recurrent Neural Network.
    Choi JS; Lee JK
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of Gait Mechanics Based on Simulated and Measured IMU Data Using an Artificial Neural Network.
    Mundt M; Koeppe A; David S; Witter T; Bamer F; Potthast W; Markert B
    Front Bioeng Biotechnol; 2020; 8():41. PubMed ID: 32117923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning.
    Zimmermann T; Taetz B; Bleser G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convolutional and recurrent neural network for human activity recognition: Application on American sign language.
    Hernandez V; Suzuki T; Venture G
    PLoS One; 2020; 15(2):e0228869. PubMed ID: 32074124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep neural networks for wearable sensor-based activity recognition in Parkinson's disease: investigating generalizability and model complexity.
    Davidashvilly S; Cardei M; Hssayeni M; Chi C; Ghoraani B
    Biomed Eng Online; 2024 Feb; 23(1):17. PubMed ID: 38336781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable IMU-Based Human Activity Recognition Algorithm for Clinical Balance Assessment Using 1D-CNN and GRU Ensemble Model.
    Kim YW; Joa KL; Jeong HY; Lee S
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Impact Loading Rate Estimation During Running via a Subject-Independent Convolutional Neural Network Model and Optimal IMU Placement.
    Tan T; Strout ZA; Shull PB
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):1215-1222. PubMed ID: 32763858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial-Measurement-Unit-Based Novel Human Activity Recognition Algorithm Using Conformer.
    Kim YW; Cho WH; Kim KS; Lee S
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable Motion Capture: Reconstructing and Predicting 3D Human Poses From Wearable Sensors.
    Moniruzzaman M; Yin Z; Hossain MSB; Choi H; Guo Z
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5345-5356. PubMed ID: 37665702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of End-to-End Neural Network Architectures and Data Augmentation Methods for Automatic Infant Motility Assessment Using Wearable Sensors.
    Airaksinen M; Vanhatalo S; Räsänen O
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of lower limb joint angles and moments during gait using artificial neural networks.
    Mundt M; Thomsen W; Witter T; Koeppe A; David S; Bamer F; Potthast W; Markert B
    Med Biol Eng Comput; 2020 Jan; 58(1):211-225. PubMed ID: 31823114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated and Continuous Fatigue Monitoring in Construction Workers Using Forearm EMG and IMU Wearable Sensors and Recurrent Neural Network.
    Bangaru SS; Wang C; Aghazadeh F
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnosis of Patellofemoral Pain Syndrome Based on a Multi-Input Convolutional Neural Network With Data Augmentation.
    Shi W; Li Y; Xiong B; Du M
    Front Public Health; 2021; 9():643191. PubMed ID: 33643997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of mild Parkinson's disease: data augmentation of time-series gait data obtained via inertial measurement units.
    Uchitomi H; Ming X; Zhao C; Ogata T; Miyake Y
    Sci Rep; 2023 Aug; 13(1):12638. PubMed ID: 37537260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity Recognition in Parkinson's Patients from Motion Data Using a CNN Model Trained by Healthy Subjects.
    Davidashvilly S; Hssayeni M; Chi C; Jimenez-Shahed J; Ghoraani B
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3199-3202. PubMed ID: 36083915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.