These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 34521826)

  • 61. Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis.
    Unterholzner SJ; Rozhon W; Papacek M; Ciomas J; Lange T; Kugler KG; Mayer KF; Sieberer T; Poppenberger B
    Plant Cell; 2015 Aug; 27(8):2261-72. PubMed ID: 26243314
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in arabidopsis.
    Correa-Aragunde N; Cejudo FJ; Lamattina L
    Ann Bot; 2015 Sep; 116(4):695-702. PubMed ID: 26229066
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7.
    Zhou XY; Song L; Xue HW
    Mol Plant; 2013 May; 6(3):887-904. PubMed ID: 23125315
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A new gene for auxin synthesis.
    Palme K; Nagy F
    Cell; 2008 Apr; 133(1):31-2. PubMed ID: 18394986
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development.
    Yamada M; Greenham K; Prigge MJ; Jensen PJ; Estelle M
    Plant Physiol; 2009 Sep; 151(1):168-79. PubMed ID: 19625638
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The AP2/EREBP gene PUCHI Co-Acts with LBD16/ASL18 and LBD18/ASL20 downstream of ARF7 and ARF19 to regulate lateral root development in Arabidopsis.
    Kang NY; Lee HW; Kim J
    Plant Cell Physiol; 2013 Aug; 54(8):1326-34. PubMed ID: 23749813
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Membrane Sterol Composition in
    Wang M; Li P; Ma Y; Nie X; Grebe M; Men S
    Int J Mol Sci; 2021 Jan; 22(1):. PubMed ID: 33406774
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis.
    Li QF; Wang C; Jiang L; Li S; Sun SS; He JX
    Sci Signal; 2012 Oct; 5(244):ra72. PubMed ID: 23033541
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis.
    Stepanova AN; Yun J; Robles LM; Novak O; He W; Guo H; Ljung K; Alonso JM
    Plant Cell; 2011 Nov; 23(11):3961-73. PubMed ID: 22108406
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Multiple Interactions between Glucose and Brassinosteroid Signal Transduction Pathways in Arabidopsis Are Uncovered by Whole-Genome Transcriptional Profiling.
    Gupta A; Singh M; Laxmi A
    Plant Physiol; 2015 Jul; 168(3):1091-105. PubMed ID: 26034265
    [TBL] [Abstract][Full Text] [Related]  

  • 71. CmTCP20 Plays a Key Role in Nitrate and Auxin Signaling-Regulated Lateral Root Development in Chrysanthemum.
    Fan HM; Sun CH; Wen LZ; Liu BW; Ren H; Sun X; Ma FF; Zheng CS
    Plant Cell Physiol; 2019 Jul; 60(7):1581-1594. PubMed ID: 31058993
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Arabidopsis ERF1 Mediates Cross-Talk between Ethylene and Auxin Biosynthesis during Primary Root Elongation by Regulating ASA1 Expression.
    Mao JL; Miao ZQ; Wang Z; Yu LH; Cai XT; Xiang CB
    PLoS Genet; 2016 Jan; 12(1):e1005760. PubMed ID: 26745809
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Lateral root development in Arabidopsis: fifty shades of auxin.
    Lavenus J; Goh T; Roberts I; Guyomarc'h S; Lucas M; De Smet I; Fukaki H; Beeckman T; Bennett M; Laplaze L
    Trends Plant Sci; 2013 Aug; 18(8):450-8. PubMed ID: 23701908
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability.
    Mounier E; Pervent M; Ljung K; Gojon A; Nacry P
    Plant Cell Environ; 2014 Jan; 37(1):162-74. PubMed ID: 23731054
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Glucose and phytohormone interplay in controlling root directional growth in Arabidopsis.
    Singh M; Gupta A; Laxmi A
    Plant Signal Behav; 2014; 9(7):e29219. PubMed ID: 25763496
    [TBL] [Abstract][Full Text] [Related]  

  • 76. GA(3) enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis.
    Li G; Zhu C; Gan L; Ng D; Xia K
    Plant Cell Rep; 2015 Mar; 34(3):483-94. PubMed ID: 25540118
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pluripotent Pericycle Cells Trigger Different Growth Outputs by Integrating Developmental Cues into Distinct Regulatory Modules.
    Xiao W; Molina D; Wunderling A; Ripper D; Vermeer JEM; Ragni L
    Curr Biol; 2020 Nov; 30(22):4384-4398.e5. PubMed ID: 32916110
    [TBL] [Abstract][Full Text] [Related]  

  • 78. RLF, a cytochrome b(5)-like heme/steroid binding domain protein, controls lateral root formation independently of ARF7/19-mediated auxin signaling in Arabidopsis thaliana.
    Ikeyama Y; Tasaka M; Fukaki H
    Plant J; 2010 Jun; 62(5):865-75. PubMed ID: 20230485
    [TBL] [Abstract][Full Text] [Related]  

  • 79. BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth.
    Mouchel CF; Osmont KS; Hardtke CS
    Nature; 2006 Sep; 443(7110):458-61. PubMed ID: 17006513
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Auxin requirements for a meristematic state in roots depend on a dual brassinosteroid function.
    Ackerman-Lavert M; Fridman Y; Matosevich R; Khandal H; Friedlander-Shani L; Vragović K; Ben El R; Horev G; Tarkowská D; Efroni I; Savaldi-Goldstein S
    Curr Biol; 2021 Oct; 31(20):4462-4472.e6. PubMed ID: 34418341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.