These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34521830)

  • 1. Near 100% ethene selectivity achieved by tailoring dual active sites to isolate dehydrogenation and oxidation.
    Wang C; Yang B; Gu Q; Han Y; Tian M; Su Y; Pan X; Kang Y; Huang C; Liu H; Liu X; Li L; Wang X
    Nat Commun; 2021 Sep; 12(1):5447. PubMed ID: 34521830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Main-Group Catalysts with Atomically Dispersed In Sites for Highly Efficient Oxidative Dehydrogenation.
    Wang C; Han Y; Tian M; Li L; Lin J; Wang X; Zhang T
    J Am Chem Soc; 2022 Sep; 144(37):16855-16865. PubMed ID: 36006855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coking-Resistant Iron Catalyst in Ethane Dehydrogenation Achieved through Siliceous Zeolite Modulation.
    Yang Z; Li H; Zhou H; Wang L; Wang L; Zhu Q; Xiao J; Meng X; Chen J; Xiao FS
    J Am Chem Soc; 2020 Sep; 142(38):16429-16436. PubMed ID: 32862644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of lattice oxygen in the oxidative dehydrogenation of ethane on alumina-supported vanadium oxide.
    Dinse A; Schomäcker R; Bell AT
    Phys Chem Chem Phys; 2009 Aug; 11(29):6119-24. PubMed ID: 19606321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative Dehydrogenation of Ethane: Superior Nb
    Zhang Z; Zhao G; Sun W; Liu Y; Lu Y
    iScience; 2019 Oct; 20():90-99. PubMed ID: 31563854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cluster size selectivity in the product distribution of ethene dehydrogenation on niobium clusters.
    Parnis JM; Escobar-Cabrera E; Thompson MG; Jacula JP; Lafleur RD; Guevara-García A; Martínez A; Rayner DM
    J Phys Chem A; 2005 Aug; 109(32):7046-56. PubMed ID: 16834067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Unique Antioxidation Property of Boron-Based Catalysts during Oxidative Dehydrogenation of Alkanes.
    Liu Z; Xu D; Xia M; Lu WD; Lu AH; Wang D
    J Phys Chem Lett; 2021 Sep; 12(36):8770-8776. PubMed ID: 34491066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating Lattice Oxygen in Dual-Functional Mo-V-O Mixed Oxides for Chemical Looping Oxidative Dehydrogenation.
    Chen S; Zeng L; Mu R; Xiong C; Zhao ZJ; Zhao C; Pei C; Peng L; Luo J; Fan LS; Gong J
    J Am Chem Soc; 2019 Nov; 141(47):18653-18657. PubMed ID: 31703164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts.
    Grant JT; Carrero CA; Goeltl F; Venegas J; Mueller P; Burt SP; Specht SE; McDermott WP; Chieregato A; Hermans I
    Science; 2016 Dec; 354(6319):1570-1573. PubMed ID: 27934702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Dehydrogenation of Ethane on the IrO
    Bian Y; Kim M; Li T; Asthagiri A; Weaver JF
    J Am Chem Soc; 2018 Feb; 140(7):2665-2672. PubMed ID: 29376362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethene adsorption and dehydrogenation on clean and oxygen precovered Ni(111) studied by high resolution x-ray photoelectron spectroscopy.
    Lorenz MP; Fuhrmann T; Streber R; Bayer A; Bebensee F; Gotterbarm K; Kinne M; Tränkenschuh B; Zhu JF; Papp C; Denecke R; Steinrück HP
    J Chem Phys; 2010 Jul; 133(1):014706. PubMed ID: 20614983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.
    Haibach MC; Kundu S; Brookhart M; Goldman AS
    Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites.
    Gounder R; Iglesia E
    J Am Chem Soc; 2009 Feb; 131(5):1958-71. PubMed ID: 19146372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes.
    Hauser AW; Gomes J; Bajdich M; Head-Gordon M; Bell AT
    Phys Chem Chem Phys; 2013 Dec; 15(47):20727-34. PubMed ID: 24196250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Oxidative Dehydrogenation of Ethane to Ethylene in a Solid Oxide Electrolyzer.
    Ye L; Duan X; Xie K
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):21746-21750. PubMed ID: 34346541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Facile and Efficient Method to Fabricate Highly Selective Nanocarbon Catalysts for Oxidative Dehydrogenation.
    Zhang Y; Wang J; Rong J; Diao J; Zhang J; Shi C; Liu H; Su D
    ChemSusChem; 2017 Jan; 10(2):353-358. PubMed ID: 28000383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type 3 Porous Liquids for the Separation of Ethane and Ethene.
    Lai B; Cahir J; Tsang MY; Jacquemin J; Rooney D; Murrer B; James SL
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):932-936. PubMed ID: 33350302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of size of catalytically active phases in the dehydrogenation of alcohols and the challenging selective oxidation of hydrocarbons.
    Zhang Q; Deng W; Wang Y
    Chem Commun (Camb); 2011 Sep; 47(33):9275-92. PubMed ID: 21629889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative dehydrogenation of ethane: catalytic and mechanistic aspects and future trends.
    Najari S; Saeidi S; Concepcion P; Dionysiou DD; Bhargava SK; Lee AF; Wilson K
    Chem Soc Rev; 2021 Apr; 50(7):4564-4605. PubMed ID: 33595011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.