These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34521886)

  • 1. Red-lesion extraction in retinal fundus images by directional intensity changes' analysis.
    Monemian M; Rabbani H
    Sci Rep; 2021 Sep; 11(1):18223. PubMed ID: 34521886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated detection of red lesions from digital colour fundus photographs.
    Jaafar HF; Nandi AK; Al-Nuaimy W
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6232-5. PubMed ID: 22255763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle swarm optimization method for small retinal vessels detection on multiresolution fundus images.
    Khomri B; Christodoulidis A; Djerou L; Babahenini MC; Cheriet F
    J Biomed Opt; 2018 May; 23(5):1-13. PubMed ID: 29749141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation of retinal blood vessels by a novel hybrid technique- Principal Component Analysis (PCA) and Contrast Limited Adaptive Histogram Equalization (CLAHE).
    Sidhu RK; Sachdeva J; Katoch D
    Microvasc Res; 2023 Jul; 148():104477. PubMed ID: 36746364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning.
    Sugeno A; Ishikawa Y; Ohshima T; Muramatsu R
    Comput Biol Med; 2021 Oct; 137():104795. PubMed ID: 34488028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques.
    Akyol K; Şen B; Bayır Ş
    Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting red-lesions from retinal fundus images using unique morphological features.
    Monemian M; Rabbani H
    Sci Rep; 2023 Mar; 13(1):3487. PubMed ID: 36859429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exudate identification in retinal fundus images using precise textural verifications.
    Monemian M; Rabbani H
    Sci Rep; 2023 Feb; 13(1):2824. PubMed ID: 36808177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directional analysis of intensity changes for determining the existence of cyst in optical coherence tomography images.
    Monemian M; Rabbani H
    Sci Rep; 2022 Feb; 12(1):2105. PubMed ID: 35136133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network-based features for retinal fundus vessel structure analysis.
    Amil P; Reyes-Manzano CF; Guzmán-Vargas L; Sendiña-Nadal I; Masoller C
    PLoS One; 2019; 14(7):e0220132. PubMed ID: 31344132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Kuchinka SN; Parhi KK
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1562-1574. PubMed ID: 26316237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal Microaneurysms Detection Using Gradient Vector Analysis and Class Imbalance Classification.
    Dai B; Wu X; Bu W
    PLoS One; 2016; 11(8):e0161556. PubMed ID: 27564376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and Robust Exudate Detection in Retinal Fundus Images Using Extreme Learning Machine Autoencoders and Modified KAZE Features.
    Mohan NJ; Murugan R; Goel T; Roy P
    J Digit Imaging; 2022 Jun; 35(3):496-513. PubMed ID: 35141807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy.
    Selçuk T; Alkan A
    Med Hypotheses; 2019 Aug; 129():109242. PubMed ID: 31371092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Automatic detection of vessels in color fundus images].
    Jiménez S; Alemany P; Fondón I; Foncubierta A; Acha B; Serrano C
    Arch Soc Esp Oftalmol; 2010 Mar; 85(3):103-9. PubMed ID: 20619121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Detection and Segmentation of Exudates for the Screening of Background Retinopathy.
    Kaur J; Mittal D; Malebary S; Nayak SR; Kumar D; Kumar M; Gagandeep ; Singh S
    J Healthc Eng; 2023; 2023():4537253. PubMed ID: 37483301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
    Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G
    Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective Fundus Image Decomposition for the Detection of Red Lesions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopathy.
    Romero-Oraá R; García M; Oraá-Pérez J; López-Gálvez MI; Hornero R
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33207825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Automated System for the Detection and Classification of Retinal Changes Due to Red Lesions in Longitudinal Fundus Images.
    Adal KM; van Etten PG; Martinez JP; Rouwen KW; Vermeer KA; van Vliet LJ
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1382-1390. PubMed ID: 28922110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.