These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34521915)

  • 1. Effect of disconnection of deformable units on the mobility and stiffness of 3D prismatic modular origami structures using angular kinematics.
    Xiao K; Zhou X; Ju J
    Sci Rep; 2021 Sep; 11(1):18259. PubMed ID: 34521915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse design of 3D reconfigurable curvilinear modular origami structures using geometric and topological reconstructions.
    Xiao K; Liang Z; Zou B; Zhou X; Ju J
    Nat Commun; 2022 Dec; 13(1):7474. PubMed ID: 36463271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular multi-degree-of-freedom soft origami robots with reprogrammable electrothermal actuation.
    Wu S; Zhao T; Zhu Y; Paulino GH
    Proc Natl Acad Sci U S A; 2024 May; 121(20):e2322625121. PubMed ID: 38709915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origami Polyhedra-Based Soft Multicellular Robots.
    Hu F; Zhang C
    Soft Robot; 2024 Apr; 11(2):244-259. PubMed ID: 37870759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetically Driven Modular Mechanical Metamaterials with High Programmability, Reconfigurability, and Multiple Applications.
    Li L; Yao H; Mi S
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3486-3496. PubMed ID: 36598348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding at the Microscale: Enabling Multifunctional 3D Origami-Architected Metamaterials.
    Lin Z; Novelino LS; Wei H; Alderete NA; Paulino GH; Espinosa HD; Krishnaswamy S
    Small; 2020 Sep; 16(35):e2002229. PubMed ID: 32715617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-triangles cylindrical origami and inspired metamaterials with tunable stiffness and stretchable robotic arm.
    Wang X; Qu H; Li X; Kuang Y; Wang H; Guo S
    PNAS Nexus; 2023 Apr; 2(4):pgad098. PubMed ID: 37065617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of reconfigurable prismatic architected materials.
    Overvelde JT; Weaver JC; Hoberman C; Bertoldi K
    Nature; 2017 Jan; 541(7637):347-352. PubMed ID: 28102254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Oxide-Enabled Synthesis of Metal Oxide Origamis for Soft Robotics.
    Yang H; Yeow BS; Chang TH; Li K; Fu F; Ren H; Chen PY
    ACS Nano; 2019 May; 13(5):5410-5420. PubMed ID: 30896919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of origami and deployable concept in volumetric modular units.
    Beatini V; Gatheeshgar P; Rajanayagam H; Poologanathan K; Suntharalingam T; Perera D; Kanthasamy E; Nagaratnam B
    Sci Rep; 2022 Nov; 12(1):19180. PubMed ID: 36357448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials.
    Filipov ET; Tachi T; Paulino GH
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12321-6. PubMed ID: 26351693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of complex origami assemblages for reconfigurable structures.
    Zhao Z; Kuang X; Wu J; Zhang Q; Paulino GH; Qi HJ; Fang D
    Soft Matter; 2018 Oct; 14(39):8051-8059. PubMed ID: 30255916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties.
    Li S; Fang H; Sadeghi S; Bhovad P; Wang KW
    Adv Mater; 2019 Feb; 31(5):e1805282. PubMed ID: 30516852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origami-based Building Blocks for Modular Construction of Foldable Structures.
    Mousanezhad D; Kamrava S; Vaziri A
    Sci Rep; 2017 Nov; 7(1):14792. PubMed ID: 29093452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconfigurable origami with variable stiffness joints for adaptive robotic locomotion and grasping.
    Lerner E; Chen Z; Zhao J
    Philos Trans A Math Phys Eng Sci; 2024 Oct; 382(2283):20240017. PubMed ID: 39370786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origami spring-inspired metamaterials and robots: An attempt at fully programmable robotics.
    Hu F; Wang W; Cheng J; Bao Y
    Sci Prog; 2020; 103(3):36850420946162. PubMed ID: 32840456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origami tubes with reconfigurable polygonal cross-sections.
    Filipov ET; Paulino GH; Tachi T
    Proc Math Phys Eng Sci; 2016 Jan; 472(2185):20150607. PubMed ID: 26997894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoupling local mechanics from large-scale structure in modular metamaterials.
    Yang N; Silverberg JL
    Proc Natl Acad Sci U S A; 2017 Apr; 114(14):3590-3595. PubMed ID: 28320939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rigidly flat-foldable class of lockable origami-inspired metamaterials with topological stiff states.
    Jamalimehr A; Mirzajanzadeh M; Akbarzadeh A; Pasini D
    Nat Commun; 2022 Apr; 13(1):1816. PubMed ID: 35383167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lagrangian approach to origami vertex analysis: kinematics.
    Grasinger M; Gillman A; Buskohl PR
    Philos Trans A Math Phys Eng Sci; 2024 Oct; 382(2283):20240203. PubMed ID: 39370790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.