These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34521932)

  • 1. Spectral responses in rangelands and land cover change by livestock in regions of the Caatinga biome, Brazil.
    Morais LF; Cavalcante ACR; Aquino DDN; Nogueira FHM; Cândido MJD
    Sci Rep; 2021 Sep; 11(1):18261. PubMed ID: 34521932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian Caatinga.
    Ribeiro K; Sousa-Neto ER; Carvalho JA; Sousa Lima JR; Menezes RS; Duarte-Neto PJ; da Silva Guerra G; Ometto JP
    Sci Total Environ; 2016 Nov; 571():1048-57. PubMed ID: 27453133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote sensing-based assessment of land degradation and drought impacts over terrestrial ecosystems in Northeastern Brazil.
    de Oliveira ML; Dos Santos CAC; de Oliveira G; Silva MT; da Silva BB; Cunha JEBL; Ruhoff A; Santos CAG
    Sci Total Environ; 2022 Aug; 835():155490. PubMed ID: 35476950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa Watershed, Ethiopia.
    Nigatu Wondrade ; Dick ØB; Tveite H
    Environ Monit Assess; 2014 Mar; 186(3):1765-80. PubMed ID: 24310365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examining the relationship between land surface temperature and landscape features using spectral indices with Google Earth Engine.
    Roy B; Bari E
    Heliyon; 2022 Sep; 8(9):e10668. PubMed ID: 36164525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery.
    Li G; Lu D; Moran E; Hetrick S
    Int J Remote Sens; 2011; 32(23):8207-8230. PubMed ID: 22368311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ENVIRONMENTAL AUDITING: Use of Landsat Thematic Mapper Data to Assess Seasonal Rangeland Changes in the Southeast Kalahari, Botswana.
    RINGROSE S; MUSISI-NKAMBWE S; COLEMAN T; NELLIS D; BUSSING C
    Environ Manage; 1999 Jan; 23(1):125-138. PubMed ID: 9817777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data on time series analysis of land surface temperature variation in response to vegetation indices in twelve Wereda of Ethiopia using mono window, split window algorithm and spectral radiance model.
    Abdul Athick ASM; Shankar K; Naqvi HR
    Data Brief; 2019 Dec; 27():104773. PubMed ID: 31763418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Land use/land cover change and land surface temperature of Ibadan and environs, Nigeria.
    Fashae OA; Adagbasa EG; Olusola AO; Obateru RO
    Environ Monit Assess; 2020 Jan; 192(2):109. PubMed ID: 31932977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of Land Cover with Optical Images, Supervised Algorithms, and Google Earth Engine.
    Pech-May F; Aquino-Santos R; Rios-Toledo G; Posadas-Durán JPF
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data on land use and land cover changes in Adama Wereda, Ethiopia, on ETM+, TM and OLI- TIRS landsat sensor using PCC and CDM techniques.
    Abdul Athick ASM; Shankar K
    Data Brief; 2019 Jun; 24():103880. PubMed ID: 31008161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spectral changes of deforestation in the Brazilian tropical savanna.
    Trancoso R; Sano EE; Meneses PR
    Environ Monit Assess; 2015 Jan; 187(1):4145. PubMed ID: 25471621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving neural network classification of indigenous forest in New Zealand with phenological features.
    Ye N; Morgenroth J; Xu C; Cai Z
    J Environ Manage; 2022 Jul; 314():115134. PubMed ID: 35472842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Land cover change of watersheds in Southern Guam from 1973 to 2001.
    Wen Y; Khosrowpanah S; Heitz L
    Environ Monit Assess; 2011 Aug; 179(1-4):521-9. PubMed ID: 21072586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Land Cover Change in the Central Region of the Lower Yangtze River Based on Landsat Imagery and the Google Earth Engine: A Case Study in Nanjing, China.
    Zhang DD; Zhang L
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32276373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using GIS tools to detect the land use/land cover changes during forty years in Lodhran District of Pakistan.
    Hussain S; Mubeen M; Ahmad A; Akram W; Hammad HM; Ali M; Masood N; Amin A; Farid HU; Sultana SR; Fahad S; Wang D; Nasim W
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):39676-39692. PubMed ID: 31385244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
    Maynard JJ; Karl JW
    PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Extraction of land-cover and wetland area in Bohai Rim region based on Google Earth Engine.].
    Yu LL; Sun LS; Zhang DH; Liu M; Xie ZW; Ping XY
    Ying Yong Sheng Tai Xue Bao; 2020 Dec; 31(12):4091-4098. PubMed ID: 33393246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping LULC types in the Cerrado-Atlantic Forest ecotone region using a Landsat time series and object-based image approach: A case study of the Prata River Basin, Mato Grosso do Sul, Brazil.
    da Cunha ER; Santos CAG; da Silva RM; Bacani VM; Teodoro PE; Panachuki E; de Souza Oliveira N
    Environ Monit Assess; 2020 Jan; 192(2):136. PubMed ID: 31980935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Pheno-climatic profiles of vegetation based on multitemporal analysis of satellite data].
    Taddei R
    Parassitologia; 2004 Jun; 46(1-2):63-6. PubMed ID: 15305688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.