These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 34521996)

  • 1. Publisher Correction: Multistability in a star network of Kuramoto-type oscillators with synaptic plasticity.
    Ratas I; Pyragas K; Tass PA
    Sci Rep; 2021 Sep; 11(1):18603. PubMed ID: 34521996
    [No Abstract]   [Full Text] [Related]  

  • 2. Multistability in a star network of Kuramoto-type oscillators with synaptic plasticity.
    Ratas I; Pyragas K; Tass PA
    Sci Rep; 2021 May; 11(1):9840. PubMed ID: 33972613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of synaptic and myelin plasticity on learning in a network of Kuramoto phase oscillators.
    Karimian M; Dibenedetto D; Moerel M; Burwick T; Westra RL; De Weerd P; Senden M
    Chaos; 2019 Aug; 29(8):083122. PubMed ID: 31472483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multistability in the Kuramoto model with synaptic plasticity.
    Maistrenko YL; Lysyansky B; Hauptmann C; Burylko O; Tass PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066207. PubMed ID: 17677340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erratum: "Effects of synaptic and myelin plasticity on learning in a network of Kuramoto phase oscillators" [Chaos 29, 083122 (2019)].
    Karimian M; Dibenedetto D; Moerel M; Burwick T; Westra RL; De Weerd P; Senden M
    Chaos; 2020 Jun; 30(6):069902. PubMed ID: 32611082
    [No Abstract]   [Full Text] [Related]  

  • 6. Synchronization in phase-coupled Kuramoto oscillator networks with axonal delay and synaptic plasticity.
    Timms L; English LQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032906. PubMed ID: 24730912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Star-type oscillatory networks with generic Kuramoto-type coupling: A model for "Japanese drums synchrony".
    Vlasov V; Pikovsky A; Macau EE
    Chaos; 2015 Dec; 25(12):123120. PubMed ID: 26723159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multistability of twisted states in non-locally coupled Kuramoto-type models.
    Girnyk T; Hasler M; Maistrenko Y
    Chaos; 2012 Mar; 22(1):013114. PubMed ID: 22462990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach.
    Pinto RS; Saa A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062801. PubMed ID: 26764738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity and learning in a network of coupled phase oscillators.
    Seliger P; Young SC; Tsimring LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041906. PubMed ID: 12005872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization properties of network motifs: influence of coupling delay and symmetry.
    D'Huys O; Vicente R; Erneux T; Danckaert J; Fischer I
    Chaos; 2008 Sep; 18(3):037116. PubMed ID: 19045490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization Conditions for a Multirate Kuramoto Network With an Arbitrary Topology and Nonidentical Oscillators.
    Wu L; Pota HR; Petersen IR
    IEEE Trans Cybern; 2019 Jun; 49(6):2242-2254. PubMed ID: 29993946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Configurational stability for the Kuramoto-Sakaguchi model.
    Bronski JC; Carty T; DeVille L
    Chaos; 2018 Oct; 28(10):103109. PubMed ID: 30384636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model.
    Omel'chenko OE; Wolfrum M
    Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic correlations in the finite-size Kuramoto model of coupled oscillators.
    Peter F; Gong CC; Pikovsky A
    Phys Rev E; 2019 Sep; 100(3-1):032210. PubMed ID: 31639966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronous harmony in an ensemble of Hamiltonian mean-field oscillators and inertial Kuramoto oscillators.
    Ha SY; Lee J; Li Z
    Chaos; 2018 Nov; 28(11):113112. PubMed ID: 30501218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase coalescence in a population of heterogeneous Kuramoto oscillators.
    Phogat R; Ray A; Parmananda P; Ghosh D
    Chaos; 2021 Apr; 31(4):041104. PubMed ID: 34251244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators.
    Yue W; Smith LD; Gottwald GA
    Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronization of oscillators in a Kuramoto-type model with generic coupling.
    Vlasov V; Macau EE; Pikovsky A
    Chaos; 2014 Jun; 24(2):023120. PubMed ID: 24985434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal global synchronization of partially forced Kuramoto oscillators.
    Climaco JS; Saa A
    Chaos; 2019 Jul; 29(7):073115. PubMed ID: 31370401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.