These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34523104)

  • 1. Analysis of Critical Success Factors to Design E-waste Collection Policy in India: A Fuzzy DEMATEL Approach.
    Singh S; Dasgupta MS; Routroy S
    Environ Sci Pollut Res Int; 2022 Feb; 29(7):10585-10604. PubMed ID: 34523104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing enablers of e-waste management in circular economy using DEMATEL method: An Indian perspective.
    Sharma M; Joshi S; Kumar A
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):13325-13338. PubMed ID: 32020449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circular economy potential of e-waste collectors, dismantlers, and recyclers of Maharashtra: a case study.
    Singh A; Panchal R; Naik M
    Environ Sci Pollut Res Int; 2020 Jun; 27(17):22081-22099. PubMed ID: 32291638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical factors for implementing collection target responsibility in e-waste collection in China: A DEMATEL-ISM analysis.
    Yin H; Qu Y; Guo L
    Waste Manag; 2023 Dec; 172():278-289. PubMed ID: 37931547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards the circular economy: Analysis of barriers to implementation of Turkey's zero waste management using the fuzzy DEMATEL method.
    Ayçin E; Kayapinar Kaya S
    Waste Manag Res; 2021 Aug; 39(8):1078-1089. PubMed ID: 33588709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Issues and solutions of electronic waste urban mining for circular economy transition: An Indian context.
    Sharma M; Joshi S; Govindan K
    J Environ Manage; 2021 Jul; 290():112373. PubMed ID: 33932756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A circular economy model for waste management in India.
    Kamble CB; Raju R; Vishnu R; Rajkanth R; Pariatamby A
    Waste Manag Res; 2021 Nov; 39(11):1427-1436. PubMed ID: 34494917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-stakeholder policy modeling for collection and recycling of spent portable battery waste.
    Gupta VK; Kaushal RK; Shukla SP
    Waste Manag Res; 2018 Jul; 36(7):577-593. PubMed ID: 29865967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of barriers in e-waste management in developing economy: an integrated multiple-criteria decision-making approach.
    Jangre J; Prasad K; Patel D
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72294-72308. PubMed ID: 35696062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bi-objective design of household E-waste collection with public advertising and competition from informal sectors.
    Shi J; Wang R; Chen W; Xing L; Jin M
    Waste Manag; 2020 Feb; 102():65-75. PubMed ID: 31669676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interrelationships among critical success factors for the planning of municipal solid waste management PPP projects in India using structural equation modelling.
    Ngullie N; Maturi KC; Kalamdhad AS; Laishram B
    Waste Manag Res; 2022 Jul; 40(7):859-869. PubMed ID: 34850644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of artificial intelligence to enhance collection of E-waste: A potential solution for household WEEE collection and segregation in India.
    Shreyas Madhav AV; Rajaraman R; Harini S; Kiliroor CC
    Waste Manag Res; 2022 Jul; 40(7):1047-1053. PubMed ID: 34726090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating critical barriers and pathways to implementation of e-waste formalization management systems in Ghana: a hybrid BWM and fuzzy TOPSIS approach.
    Chen D; Faibil D; Agyemang M
    Environ Sci Pollut Res Int; 2020 Dec; 27(35):44561-44584. PubMed ID: 32772292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of sustainable e-waste collection method for urban and rural region of India.
    Singh S; Dasgupta MS; Routroy S
    Waste Manag Res; 2022 May; 40(5):545-555. PubMed ID: 34407701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization.
    Ferronato N; Rada EC; Gorritty Portillo MA; Cioca LI; Ragazzi M; Torretta V
    J Environ Manage; 2019 Jan; 230():366-378. PubMed ID: 30293021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of critical factors in construction and demolition waste recycling by the grey-DEMATEL approach: a Chinese perspective.
    Liu H; Long H; Li X
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):8507-8525. PubMed ID: 31907809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eco-innovations and sustainability in solid waste management: An indian upfront in technological, organizational, start-ups and financial framework.
    Rena ; Yadav S; Patel S; Killedar DJ; Kumar S; Kumar R
    J Environ Manage; 2022 Jan; 302(Pt A):113953. PubMed ID: 34715610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study on recycling behaviours between regular recyclers and non regular recyclers in Malaysia.
    Tiew KG; Basri NEA; Deng H; Watanabe K; Zain SM; Wang S
    J Environ Manage; 2019 May; 237():255-263. PubMed ID: 30798044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological approaches for E-waste management: A green-go to boost circular economy.
    Dixit R; Kumar S; Pandey G
    Chemosphere; 2023 Sep; 336():139177. PubMed ID: 37307925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, adoption and implementation of electronic waste policies in India.
    Borthakur A
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):8672-8681. PubMed ID: 35141823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.