These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34523240)

  • 1. Multifunctional Laser-Induced Graphene Papers with Combined Defocusing and Grafting Processes for Patternable and Continuously Tunable Wettability from Superlyophilicity to Superlyophobicity.
    Wang Y; Wang G; He M; Liu F; Han M; Tang T; Luo S
    Small; 2021 Oct; 17(42):e2103322. PubMed ID: 34523240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond Laser Thermal Accumulation-Triggered Micro-/Nanostructures with Patternable and Controllable Wettability Towards Liquid Manipulating.
    Yin K; Wang L; Deng Q; Huang Q; Jiang J; Li G; He J
    Nanomicro Lett; 2022 Apr; 14(1):97. PubMed ID: 35394233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Wettability of Graphene through Nondestructive Hydrogenation and Wettability-Based Patterning for Bioapplications.
    Son J; Lee JY; Han N; Cha J; Choi J; Kwon J; Nam S; Yoo KH; Lee GH; Hong J
    Nano Lett; 2020 Aug; 20(8):5625-5631. PubMed ID: 32275158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting Properties of Defective Graphene Oxide: A Molecular Simulation Study.
    Xu K; Zhang J; Hao X; Zhang C; Wei N; Zhang C
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29899306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wettability Controlled Surface for Energy Conversion.
    Zhao W; Jiang Y; Yu W; Yu Z; Liu X
    Small; 2022 Aug; 18(31):e2202906. PubMed ID: 35793418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different Roles of Surface Chemistry and Roughness of Laser-Induced Graphene: Implications for Tunable Wettability.
    Dallinger A; Steinwender F; Gritzner M; Greco F
    ACS Appl Nano Mater; 2023 Sep; 6(18):16201-16211. PubMed ID: 37772265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-and nanostructured silicon-based superomniphobic surfaces.
    Nguyen TP; Boukherroub R; Thomy V; Coffinier Y
    J Colloid Interface Sci; 2014 Feb; 416():280-8. PubMed ID: 24370432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid superhydrophobic/hydrophilic patterns deposited on glass by laser-induced forward transfer method for efficient water harvesting.
    Bakhtiari N; Azizian S; Jaleh B
    J Colloid Interface Sci; 2022 Nov; 625():383-396. PubMed ID: 35724461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wettability control of ZnO nanoparticles for universal applications.
    Lee M; Kwak G; Yong K
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3350-6. PubMed ID: 21819107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface properties of cork: Is cork a hydrophobic material?
    Chanut J; Wang Y; Dal Cin I; Ferret E; Gougeon RD; Bellat JP; Karbowiak T
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):416-423. PubMed ID: 34628314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films.
    Schutzius TM; Bayer IS; Jursich GM; Das A; Megaridis CM
    Nanoscale; 2012 Sep; 4(17):5378-85. PubMed ID: 22820974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wettability of graphene.
    Raj R; Maroo SC; Wang EN
    Nano Lett; 2013 Apr; 13(4):1509-15. PubMed ID: 23458704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid one-step fabrication of patternable superhydrophobic surfaces driven by Marangoni instability.
    Kang SM; Hwang S; Jin SH; Choi CH; Kim J; Park BJ; Lee D; Lee CS
    Langmuir; 2014 Mar; 30(10):2828-34. PubMed ID: 24564739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting transparency of graphene.
    Rafiee J; Mi X; Gullapalli H; Thomas AV; Yavari F; Shi Y; Ajayan PM; Koratkar NA
    Nat Mater; 2012 Jan; 11(3):217-22. PubMed ID: 22266468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of the Surface Nano-Roughness on the Wettability Performance of Microstructured Metallic Surface Using Direct Laser Interference Patterning.
    Aguilar-Morales AI; Alamri S; Voisiat B; Kunze T; Lasagni AF
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31461830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instant Tuning of Superhydrophilic to Robust Superhydrophobic and Self-Cleaning Metallic Coating: Simple, Direct, One-Step, and Scalable Technique.
    Rahman OSA; Mukherjee B; Islam A; Keshri AK
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4616-4624. PubMed ID: 30608641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization, and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths.
    Shanmugharaj AM; Yoon JH; Yang WJ; Ryu SH
    J Colloid Interface Sci; 2013 Jul; 401():148-54. PubMed ID: 23622684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A superhydrophobic to superhydrophilic in situ wettability switch of microstructured polypyrrole surfaces.
    Chang JH; Hunter IW
    Macromol Rapid Commun; 2011 May; 32(9-10):718-23. PubMed ID: 21544891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wettability conversion from superoleophobic to superhydrophilic on titania/single-walled carbon nanotube composite coatings.
    Zhang M; Zhang T; Cui T
    Langmuir; 2011 Aug; 27(15):9295-301. PubMed ID: 21732680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.