These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 34523528)
81. Multiple Isotopes Reveal a Hydrology Dominated Control on the Nitrogen Cycling in the Nujiang River Basin, the Last Undammed Large River Basin on the Tibetan Plateau. Jiang H; Liu W; Li Y; Zhang J; Xu Z Environ Sci Technol; 2022 Apr; 56(7):4610-4619. PubMed ID: 35294176 [TBL] [Abstract][Full Text] [Related]
82. Vertical stratification of microbial communities and isotope geochemistry tie groundwater denitrification to sampling location within a nitrate-contaminated aquifer. Chakraborty A; Suchy M; Hubert CRJ; Ryan MC Sci Total Environ; 2022 May; 820():153092. PubMed ID: 35038526 [TBL] [Abstract][Full Text] [Related]
83. A hillslope-scale aquifer-model to determine past agricultural legacy and future nitrate concentrations in rivers. Guillaumot L; Marçais J; Vautier C; Guillou A; Vergnaud V; Bouchez C; Dupas R; Durand P; de Dreuzy JR; Aquilina L Sci Total Environ; 2021 Dec; 800():149216. PubMed ID: 34392215 [TBL] [Abstract][Full Text] [Related]
84. Controlling factors and driving mechanisms of nitrate contamination in groundwater system of Bandung Basin, Indonesia, deduced by combined use of stable isotope ratios, CFC age dating, and socioeconomic parameters. Taufiq A; Effendi AJ; Iskandar I; Hosono T; Hutasoit LM Water Res; 2019 Jan; 148():292-305. PubMed ID: 30390510 [TBL] [Abstract][Full Text] [Related]
85. A biological and nitrate isotopic assessment framework to understand eutrophication in aquatic ecosystems. Romanelli A; Soto DX; Matiatos I; Martínez DE; Esquius S Sci Total Environ; 2020 May; 715():136909. PubMed ID: 32018104 [TBL] [Abstract][Full Text] [Related]
86. Coupling stable isotopes and water chemistry to assess the role of hydrological and biogeochemical processes on riverine nitrogen sources. Hu M; Liu Y; Zhang Y; Dahlgren RA; Chen D Water Res; 2019 Mar; 150():418-430. PubMed ID: 30557828 [TBL] [Abstract][Full Text] [Related]
87. Denitrification and dilution along fracture flowpaths influence the recovery of a bedrock aquifer from nitrate contamination. Kim JJ; Comstock J; Ryan P; Heindel C; Koenigsberger S Sci Total Environ; 2016 Nov; 569-570():450-468. PubMed ID: 27355518 [TBL] [Abstract][Full Text] [Related]
88. Spectral and molecular insights into the characteristics of dissolved organic matter in nitrate-contaminated groundwater. Ding H; Gao H; Zhu M; Yu M; Sun Y; Zheng M; Su J; Xi B Environ Pollut; 2024 Aug; 355():124202. PubMed ID: 38788994 [TBL] [Abstract][Full Text] [Related]
89. Severe Nitrate Pollution and Health Risks of Coastal Aquifer Simultaneously Influenced by Saltwater Intrusion and Intensive Anthropogenic Activities. Wu J; Lu J; Wen X; Zhang Z; Lin Y Arch Environ Contam Toxicol; 2019 Jul; 77(1):79-87. PubMed ID: 31053873 [TBL] [Abstract][Full Text] [Related]
90. [Mechanism of Inorganic Nitrogen Transformation and Identification of Nitrogen Sources in Water and Soil]. Liang X; Sun LQ; Zhang X; Zhang J; Fu PY Huan Jing Ke Xue; 2020 Sep; 41(9):4333-4344. PubMed ID: 33124315 [TBL] [Abstract][Full Text] [Related]
91. Identifying groundwater ammonium hotspots in riverside aquifer of Central Yangtze River Basin. Shen S; Zhang J; Du Y; Ma T; Deng Y; Han Z Sci Total Environ; 2024 Nov; 953():176094. PubMed ID: 39244055 [TBL] [Abstract][Full Text] [Related]
92. Using delta15N- and delta18O-values to identify nitrate sources in karst ground water, Guiyang, southwest China. Liu CQ; Li SL; Lang YC; Xiao HY Environ Sci Technol; 2006 Nov; 40(22):6928-33. PubMed ID: 17153996 [TBL] [Abstract][Full Text] [Related]
93. Identification of the nitrate contamination sources of the Brusselian sands groundwater body (Belgium) using a dual-isotope approach. Mattern S; Sebilo M; Vanclooster M Isotopes Environ Health Stud; 2011 Sep; 47(3):297-315. PubMed ID: 21892890 [TBL] [Abstract][Full Text] [Related]
94. Using 15N, 17O, and 18O to determine nitrate sources in the Yellow River, China. Liu T; Wang F; Michalski G; Xia X; Liu S Environ Sci Technol; 2013; 47(23):13412-21. PubMed ID: 24199648 [TBL] [Abstract][Full Text] [Related]
95. Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers. Koh DC; Mayer B; Lee KS; Ko KS J Contam Hydrol; 2010 Oct; 118(1-2):62-78. PubMed ID: 20828864 [TBL] [Abstract][Full Text] [Related]
96. Contrastive mechanisms of groundwater ammonium enrichment in different hydrogeologic settings. Shen S; Ma T; Du Y; Han Z; Zhang J; Liu W; Luo K Sci Total Environ; 2023 Jun; 875():162542. PubMed ID: 36870484 [TBL] [Abstract][Full Text] [Related]
97. [Using stable isotope to trace the sources of nitrate in groundwater in Shijiazhuang]. Liu J; Chen ZY Huan Jing Ke Xue; 2009 Jun; 30(6):1602-7. PubMed ID: 19662837 [TBL] [Abstract][Full Text] [Related]
98. River water infiltration enhances denitrification efficiency in riparian groundwater. Trauth N; Musolff A; Knöller K; Kaden US; Keller T; Werban U; Fleckenstein JH Water Res; 2018 Mar; 130():185-199. PubMed ID: 29223089 [TBL] [Abstract][Full Text] [Related]
99. Determination of dominant sources of nitrate contamination in transboundary (Russian Federation/Ukraine) catchment with heterogeneous land use. Vystavna Y; Diadin D; Grynenko V; Yakovlev V; Vergeles Y; Huneau F; Rossi PM; Hejzlar J; Knöller K Environ Monit Assess; 2017 Sep; 189(10):509. PubMed ID: 28921396 [TBL] [Abstract][Full Text] [Related]
100. Spatio-temporal variations of shallow and deep well groundwater nitrate concentrations along the Indus River floodplain aquifer in Pakistan. Khan SN; Yasmeen T; Riaz M; Arif MS; Rizwan M; Ali S; Tariq A; Jessen S Environ Pollut; 2019 Oct; 253():384-392. PubMed ID: 31325883 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]