These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 34523541)
1. Drought vulnerability and risk assessment in India: Sensitivity analysis and comparison of aggregation techniques. Sahana V; Mondal A; Sreekumar P J Environ Manage; 2021 Dec; 299():113689. PubMed ID: 34523541 [TBL] [Abstract][Full Text] [Related]
2. A study on agricultural drought vulnerability at disaggregated level in a highly irrigated and intensely cropped state of India. Murthy CS; Yadav M; Mohammed Ahamed J; Laxman B; Prawasi R; Sesha Sai MV; Hooda RS Environ Monit Assess; 2015 Mar; 187(3):140. PubMed ID: 25716524 [TBL] [Abstract][Full Text] [Related]
3. Integrated assessment of drought vulnerability for water resources management of Bina basin in Central India. Thomas T; Nayak PC; Ventakesh B Environ Monit Assess; 2022 Jul; 194(9):621. PubMed ID: 35906447 [TBL] [Abstract][Full Text] [Related]
4. Geospatial approach for assessment of biophysical vulnerability to agricultural drought and its intra-seasonal variations. Sehgal VK; Dhakar R Environ Monit Assess; 2016 Mar; 188(3):197. PubMed ID: 26922747 [TBL] [Abstract][Full Text] [Related]
5. Climate change and groundwater overdraft impacts on agricultural drought in India: Vulnerability assessment, food security measures and policy recommendation. Roy P; Pal SC; Chakrabortty R; Chowdhuri I; Saha A; Shit M Sci Total Environ; 2022 Nov; 849():157850. PubMed ID: 35934024 [TBL] [Abstract][Full Text] [Related]
6. Enhancing drought resilience: machine learning-based vulnerability assessment in Uttar Pradesh, India. Kundu B; Rana NK; Kundu S Environ Sci Pollut Res Int; 2024 Jun; 31(30):43005-43022. PubMed ID: 38886270 [TBL] [Abstract][Full Text] [Related]
7. Geospatial assessment of agricultural drought vulnerability using integrated three-dimensional model in the upper Dwarakeshwar river basin in West Bengal, India. Senapati U; Das TK Environ Sci Pollut Res Int; 2024 Sep; 31(41):54061-54088. PubMed ID: 36287365 [TBL] [Abstract][Full Text] [Related]
8. Assessment of Agricultural Drought Risk in the Lancang-Mekong Region, South East Asia. Zhang L; Song W; Song W Int J Environ Res Public Health; 2020 Aug; 17(17):. PubMed ID: 32847143 [TBL] [Abstract][Full Text] [Related]
9. Evaluating the climatic and socio-economic influences on the agricultural drought vulnerability in Jharkhand. Koley S; Jeganathan C Environ Monit Assess; 2022 Oct; 195(1):8. PubMed ID: 36269435 [TBL] [Abstract][Full Text] [Related]
10. Integrated drought monitoring and assessment using multi-sensor and multi-temporal earth observation datasets: a case study of two agriculture-dominated states of India. C M AM; Chowdary VM; Kesarwani M; Neeti N Environ Monit Assess; 2022 Oct; 195(1):1. PubMed ID: 36264398 [TBL] [Abstract][Full Text] [Related]
11. Assessment of multidimensional drought vulnerability using exposure, sensitivity, and adaptive capacity components. Serkendiz H; Tatli H Environ Monit Assess; 2023 Sep; 195(10):1154. PubMed ID: 37674026 [TBL] [Abstract][Full Text] [Related]
12. Assessment on Agricultural Drought Vulnerability and Spatial Heterogeneity Study in China. Guo H; Chen J; Pan C Int J Environ Res Public Health; 2021 Apr; 18(9):. PubMed ID: 33922164 [TBL] [Abstract][Full Text] [Related]
13. Drought Vulnerability Assessment Using Geospatial Techniques in Southern Queensland, Australia. Hoque M; Pradhan B; Ahmed N; Alamri A Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696109 [TBL] [Abstract][Full Text] [Related]
14. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India. Pathan AI; Girish Agnihotri P; Said S; Patel D Environ Monit Assess; 2022 Jun; 194(7):509. PubMed ID: 35713716 [TBL] [Abstract][Full Text] [Related]
15. [Spatio-temporal characteristics of agricultural drought in Shaanxi Province, China based on integrated disaster risk index]. He B; Wang QJ; Wu D; Zhou BB Ying Yong Sheng Tai Xue Bao; 2016 Oct; 27(10):3299-3306. PubMed ID: 29726157 [TBL] [Abstract][Full Text] [Related]
16. Framework for mapping large-scale nature-based solutions for drought mitigation: Regional application in Flanders. Yimer EA; De Trift L; Dondeyne S; Speijer L; Huysmans M; Cools J; Nossent J; van Griensven A Water Res; 2024 Sep; 261():122003. PubMed ID: 38986283 [TBL] [Abstract][Full Text] [Related]
17. Prediction Modeling and Mapping of Groundwater Fluoride Contamination throughout India. Podgorski JE; Labhasetwar P; Saha D; Berg M Environ Sci Technol; 2018 Sep; 52(17):9889-9898. PubMed ID: 30052029 [TBL] [Abstract][Full Text] [Related]
18. Evaluating tropical drought risk by combining open access gridded vulnerability and hazard data products. Nauditt A; Stahl K; Rodríguez E; Birkel C; Formiga-Johnsson RM; Kallio M; Ribbe L; Baez-Villanueva OM; Thurner J; Hann H Sci Total Environ; 2022 May; 822():153493. PubMed ID: 35114232 [TBL] [Abstract][Full Text] [Related]
19. Framework for mapping the drivers of coastal vulnerability and spatial decision making for climate-change adaptation: A case study from Maharashtra, India. Krishnan P; Ananthan PS; Purvaja R; Joyson Joe Jeevamani J; Amali Infantina J; Srinivasa Rao C; Anand A; Mahendra RS; Sekar I; Kareemulla K; Biswas A; Kalpana Sastry R; Ramesh R Ambio; 2019 Feb; 48(2):192-212. PubMed ID: 29855893 [TBL] [Abstract][Full Text] [Related]
20. Modeling assessment of groundwater vulnerability to contamination risk in a typical basement terrain using TOPSIS-entropy developed vulnerability data mining technique. Atenidegbe OF; Mogaji KA Heliyon; 2023 Jul; 9(7):e18371. PubMed ID: 37539304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]