BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 34523565)

  • 1. A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks.
    Chavan S; Yadav B; Tyagi RD; Drogui P
    Bioresour Technol; 2021 Dec; 341():125900. PubMed ID: 34523565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of polyhydroxyalkanoates production from waste feedstocks and applications.
    Pakalapati H; Chang CK; Show PL; Arumugasamy SK; Lan JC
    J Biosci Bioeng; 2018 Sep; 126(3):282-292. PubMed ID: 29803402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.
    Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE
    Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on the potential of polyhydroxyalkanoates production from oil-based substrates.
    Chien Bong CP; Alam MNHZ; Samsudin SA; Jamaluddin J; Adrus N; Mohd Yusof AH; Muis ZA; Hashim H; Salleh MM; Abdullah AR; Chuprat BRB
    J Environ Manage; 2021 Nov; 298():113461. PubMed ID: 34435568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Challenges and Trends of Polyhydroxyalkanoate Production by Extremophilic Bacteria Using Renewable Feedstocks.
    Możejko-Ciesielska J; Ray S; Sankhyan S
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives.
    De Donno Novelli L; Moreno Sayavedra S; Rene ER
    Bioresour Technol; 2021 Jul; 331():124985. PubMed ID: 33819906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner.
    Koller M; Maršálek L; de Sousa Dias MM; Braunegg G
    N Biotechnol; 2017 Jul; 37(Pt A):24-38. PubMed ID: 27184617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments.
    Li M; Wilkins MR
    Int J Biol Macromol; 2020 Aug; 156():691-703. PubMed ID: 32315680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent developments in Polyhydroxyalkanoates (PHAs) production - A review.
    Sabapathy PC; Devaraj S; Meixner K; Anburajan P; Kathirvel P; Ravikumar Y; Zabed HM; Qi X
    Bioresour Technol; 2020 Jun; 306():123132. PubMed ID: 32220472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives.
    Goswami L; Kushwaha A; Napathorn SC; Kim BS
    Int J Biol Macromol; 2023 Aug; 247():125743. PubMed ID: 37423435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria?
    Marciniak P; Możejko-Ciesielska J
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of polyhydroxyalkanoates using agro and industrial waste as a substrate - a review.
    Kanzariya R; Gautam A; Parikh S; Shah M; Gautam S
    Biotechnol Genet Eng Rev; 2023 Jan; ():1-40. PubMed ID: 36641590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial polyhydroxyalkanoates from extreme niches: Bioprospection status, opportunities and challenges.
    Kumar V; Kumar S; Singh D
    Int J Biol Macromol; 2020 Mar; 147():1255-1267. PubMed ID: 31739043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Community proteomics provides functional insight into polyhydroxyalkanoate production by a mixed microbial culture cultivated on fermented dairy manure.
    Hanson AJ; Guho NM; Paszczynski AJ; Coats ER
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):7957-76. PubMed ID: 27147532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.
    Koutinas AA; Vlysidis A; Pleissner D; Kopsahelis N; Lopez Garcia I; Kookos IK; Papanikolaou S; Kwan TH; Lin CS
    Chem Soc Rev; 2014 Apr; 43(8):2587-627. PubMed ID: 24424298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconversion of waste (water)/residues to bioplastics- A circular bioeconomy approach.
    Yadav B; Pandey A; Kumar LR; Tyagi RD
    Bioresour Technol; 2020 Feb; 298():122584. PubMed ID: 31862396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of osmotic challenge for enrichment of microbial consortia in polyhydroxyalkanoates producing thermophilic and thermotolerant bacteria and their subsequent isolation.
    Pernicova I; Novackova I; Sedlacek P; Kourilova X; Koller M; Obruca S
    Int J Biol Macromol; 2020 Feb; 144():698-704. PubMed ID: 31857173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent strategies for efficient production of polyhydroxyalkanoates by micro-organisms.
    Liu CC; Zhang LL; An J; Chen B; Yang H
    Lett Appl Microbiol; 2016 Jan; 62(1):9-15. PubMed ID: 26482840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation.
    Castilho LR; Mitchell DA; Freire DM
    Bioresour Technol; 2009 Dec; 100(23):5996-6009. PubMed ID: 19581084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters.
    Choi SY; Cho IJ; Lee Y; Kim YJ; Kim KJ; Lee SY
    Adv Mater; 2020 Sep; 32(35):e1907138. PubMed ID: 32249983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.