These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34523587)

  • 21. Breakdown of biomass for energy applications using microwave pyrolysis: A technological review.
    Allende S; Brodie G; Jacob MV
    Environ Res; 2023 Jun; 226():115619. PubMed ID: 36906271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CO
    Cho SH; Jung S; Rinklebe J; Kwon EE
    Environ Pollut; 2021 Apr; 275():116667. PubMed ID: 33581634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction Effects between the Main Components of Protein-Rich Biomass during Microwave-Assisted Pyrolysis.
    Hou C; Zhou C; Li N; Song Y; You X; Zhao J; Zhou X; Shen Z; Zhang Y
    Environ Sci Technol; 2024 May; 58(18):7826-7837. PubMed ID: 38653213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytic Gasification and Reforming of Residual Biomass in a Bench Scale System with Low Cost Catalysts.
    Garcia L; Cordoba M; Dosso L; Nardi F; Vera C; Quiroga M; Busto M; Badano J
    Chempluschem; 2023 Dec; 88(12):e202300376. PubMed ID: 37857584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microwave pyrolysis of distillers dried grain with solubles (DDGS) for biofuel production.
    Lei H; Ren S; Wang L; Bu Q; Julson J; Holladay J; Ruan R
    Bioresour Technol; 2011 May; 102(10):6208-13. PubMed ID: 21377870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conventional and microwave pyrolysis of a macroalgae waste from the Agar-Agar industry. Prospects for bio-fuel production.
    Ferrera-Lorenzo N; Fuente E; Bermúdez JM; Suárez-Ruiz I; Ruiz B
    Bioresour Technol; 2014 Jan; 151():199-206. PubMed ID: 24240147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microwave processing of oil palm wastes for bioenergy production and circular economy: Recent advancements, challenges, and future prospects.
    Foong SY; Chan YH; Lock SSM; Chin BLF; Yiin CL; Cheah KW; Loy ACM; Yek PNY; Chong WWF; Lam SS
    Bioresour Technol; 2023 Feb; 369():128478. PubMed ID: 36513306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermochemical conversion of silkworm by-product into syngas.
    Kim JY; Kwon D; Jung S; Tsang YF; Kwon EE
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130956. PubMed ID: 38499118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microwave-assisted catalytic pyrolysis of moso bamboo for high syngas production.
    Dong Q; Niu M; Bi D; Liu W; Gu X; Lu C
    Bioresour Technol; 2018 May; 256():145-151. PubMed ID: 29438914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of the microwave pyrolysis and microwave CO
    Chun YN; Jeong BR
    Environ Technol; 2018 Oct; 39(19):2484-2494. PubMed ID: 28726561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reforming sewage sludge pyrolysis volatile with Fe-embedded char: Minimization of liquid product yield.
    Yu G; Chen D; Arena U; Huang Z; Dai X
    Waste Manag; 2018 Mar; 73():464-475. PubMed ID: 28803146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyrolysis of microalgal biomass in carbon dioxide environment.
    Cho SH; Kim KH; Jeon YJ; Kwon EE
    Bioresour Technol; 2015 Oct; 193():185-91. PubMed ID: 26133476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting biochar properties and pyrolysis life-cycle inventories with compositional modeling.
    Kane S; Miller SA
    Bioresour Technol; 2024 May; 399():130551. PubMed ID: 38458265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomass tar cracking and syngas production using rice husk char-supported nickel catalysts coupled with microwave heating.
    Dong Q; Li H; Zhang S; Li X; Zhong W
    RSC Adv; 2018 Dec; 8(71):40873-40882. PubMed ID: 35557919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization.
    Zhou J; Liu S; Zhou N; Fan L; Zhang Y; Peng P; Anderson E; Ding K; Wang Y; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2018 May; 256():295-301. PubMed ID: 29455097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strategic disposal of flood debris via CO
    Choi D; Jung S; Jung MK; Park YK; Tsang YF; Kwon HH; Kwon EE
    J Hazard Mater; 2021 Jun; 412():125242. PubMed ID: 33524733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Orange peel valorization by pyrolysis under the carbon dioxide environment.
    Kwon D; Oh JI; Lam SS; Moon DH; Kwon EE
    Bioresour Technol; 2019 Aug; 285():121356. PubMed ID: 31005642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of different ash/organics and C/H/O ratios on characteristics and reaction mechanisms of sludge microwave pyrolysis to generate bio-fuels.
    Luo J; Lin J; Ma R; Chen X; Sun S; Zhang P; Liu X
    Waste Manag; 2020 Nov; 117():188-197. PubMed ID: 32861081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CO
    Song Y; Hu J; Liu J; Evrendilek F; Buyukada M
    J Hazard Mater; 2020 Dec; 400():123190. PubMed ID: 32947737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Syngas generation from different types of sewage sludge using microwave-assisted pyrolysis with silicon carbide as the absorbent.
    Oh DY; Kim D; Choi H; Park KY
    Heliyon; 2023 Mar; 9(3):e14165. PubMed ID: 36923894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.