These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34523636)

  • 1. Icosahedral 60-meric porous structure of designed supramolecular protein nanoparticle TIP60.
    Obata J; Kawakami N; Tsutsumi A; Nasu E; Miyamoto K; Kikkawa M; Arai R
    Chem Commun (Camb); 2021 Oct; 57(79):10226-10229. PubMed ID: 34523636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of Hollow Protein Nanoparticles with Modifiable Interior and Exterior Surfaces.
    Kawakami N; Kondo H; Matsuzawa Y; Hayasaka K; Nasu E; Sasahara K; Arai R; Miyamoto K
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12400-12404. PubMed ID: 30066354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle-Protein Interactions: Therapeutic Approaches and Supramolecular Chemistry.
    Kopp M; Kollenda S; Epple M
    Acc Chem Res; 2017 Jun; 50(6):1383-1390. PubMed ID: 28480714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular engineering of intrinsic and extrinsic porosity in covalent organic cages.
    Bojdys MJ; Briggs ME; Jones JT; Adams DJ; Chong SY; Schmidtmann M; Cooper AI
    J Am Chem Soc; 2011 Oct; 133(41):16566-71. PubMed ID: 21899280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A recyclable supramolecular membrane for size-selective separation of nanoparticles.
    Krieg E; Weissman H; Shirman E; Shimoni E; Rybtchinski B
    Nat Nanotechnol; 2011 Mar; 6(3):141-6. PubMed ID: 21258332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stepwise Self-Assembly and Dynamic Exchange of Supramolecular Nanocages Based on Terpridine Building Blocks.
    Zhang Z; Wang H; Shi J; Xu Y; Wang L; Shihadeh S; Zhao FJ; Hao XQ; Wang P; Liu C; Wang M; Li X
    Macromol Rapid Commun; 2018 Nov; 39(22):e1800404. PubMed ID: 30062806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled peptide-inorganic nanoparticle superstructures: from component design to applications.
    Pigliacelli C; Sánchez-Fernández R; García MD; Peinador C; Pazos E
    Chem Commun (Camb); 2020 Jul; 56(58):8000-8014. PubMed ID: 32495761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delivery of intact transcription factor by using self-assembled supramolecular nanoparticles.
    Liu Y; Wang H; Kamei K; Yan M; Chen KJ; Yuan Q; Shi L; Lu Y; Tseng HR
    Angew Chem Int Ed Engl; 2011 Mar; 50(13):3058-62. PubMed ID: 21370360
    [No Abstract]   [Full Text] [Related]  

  • 9. Towards new nanoporous biomaterials: self-assembly of sulfopillar[5]arenes with vitamin D
    Shurpik DN; Aleksandrova YI; Zelenikhin PV; Subakaeva EV; Cragg PJ; Stoikov II
    Org Biomol Chem; 2020 Jun; 18(22):4210-4216. PubMed ID: 32250381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface recognition of biomacromolecules using nanoparticle receptors.
    Verma A; Rotello VM
    Chem Commun (Camb); 2005 Jan; (3):303-12. PubMed ID: 15645020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerium oxide nanoparticle-mediated self-assembly of hybrid supramolecular hydrogels.
    Patil AJ; Krishna Kumar R; Barron NJ; Mann S
    Chem Commun (Camb); 2012 Aug; 48(64):7934-6. PubMed ID: 22763813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional encapsulation of live cells by using a hybrid matrix of nanoparticles in a supramolecular hydrogel.
    Ikeda M; Ueno S; Matsumoto S; Shimizu Y; Komatsu H; Kusumoto K; Hamachi I
    Chemistry; 2008; 14(34):10808-15. PubMed ID: 18942699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular porous network formed by molecular recognition between chemically modified nucleobases guanine and cytosine.
    Xu W; Wang JG; Jacobsen MF; Mura M; Yu M; Kelly RE; Meng QQ; Laegsgaard E; Stensgaard I; Linderoth TR; Kjems J; Kantorovich LN; Gothelf KV; Besenbacher F
    Angew Chem Int Ed Engl; 2010 Dec; 49(49):9373-7. PubMed ID: 21064057
    [No Abstract]   [Full Text] [Related]  

  • 14. Spatial Mapping of Protein Adsorption on Mesoporous Silica Nanoparticles by Stochastic Optical Reconstruction Microscopy.
    Clemments AM; Botella P; Landry CC
    J Am Chem Soc; 2017 Mar; 139(11):3978-3981. PubMed ID: 28260375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Synthesis of a 2D Ultra-Large Protein Supramolecular Nanofilm by Chemoselective Thiol-Disulfide Exchange and its Emergent Functions.
    Xu Y; Liu Y; Hu X; Qin R; Su H; Li J; Yang P
    Angew Chem Int Ed Engl; 2020 Feb; 59(7):2850-2859. PubMed ID: 31802603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular gelatin nanoparticles as matrix metalloproteinase responsive cancer cell imaging probes.
    Xu JH; Gao FP; Liu XF; Zeng Q; Guo SS; Tang ZY; Zhao XZ; Wang H
    Chem Commun (Camb); 2013 May; 49(40):4462-4. PubMed ID: 23508115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-dependent assemblies of nanoparticle mixtures in thin films.
    Kao J; Bai P; Lucas JM; Alivisatos AP; Xu T
    J Am Chem Soc; 2013 Feb; 135(5):1680-3. PubMed ID: 23327718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring nanoparticle surface chemistry to enhance laser desorption ionization of peptides and proteins.
    Castellana ET; Russell DH
    Nano Lett; 2007 Oct; 7(10):3023-5. PubMed ID: 17887713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructural transformations during the reduction of hollow and porous nickel oxide nanoparticles.
    Medford JA; Johnston-Peck AC; Tracy JB
    Nanoscale; 2013 Jan; 5(1):155-9. PubMed ID: 23168915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-nanoparticle micelles as supramolecular fluorogenic substrates enabling catalytic signal amplification and detection by DNAzyme probes.
    Chien MP; Thompson MP; Gianneschi NC
    Chem Commun (Camb); 2011 Jan; 47(1):167-9. PubMed ID: 20830351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.