These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34523789)

  • 1. Corroles: The Hitherto Elusive Parent Macrocycle and its Metal Complexes.
    Kumar A; Yadav P; Majdoub M; Saltsman I; Fridman N; Kumar S; Kumar A; Mahammed A; Gross Z
    Angew Chem Int Ed Engl; 2021 Nov; 60(47):25097-25103. PubMed ID: 34523789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural chemistry of metallocorroles: combined X-ray crystallography and quantum chemistry studies afford unique insights.
    Thomas KE; Alemayehu AB; Conradie J; Beavers CM; Ghosh A
    Acc Chem Res; 2012 Aug; 45(8):1203-14. PubMed ID: 22444488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corroles at work: a small macrocycle for great applications.
    Di Natale C; Gros CP; Paolesse R
    Chem Soc Rev; 2022 Feb; 51(4):1277-1335. PubMed ID: 35037929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of germanium, tin, phosphorus, iron, and rhodium complexes of tris(pentafluorophenyl)corrole, and the utilization of the iron and rhodium corroles as cyclopropanation catalysts.
    Simkhovich L; Mahammed A; Goldberg I; Gross Z
    Chemistry; 2001 Mar; 7(5):1041-55. PubMed ID: 11303864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFT survey of monoboron and diboron corroles: regio- and stereochemical preferences for a constrained, low-symmetry macrocycle.
    Albrett AM; Conradie J; Ghosh A; Brothers PJ
    Dalton Trans; 2008 Sep; (33):4464-73. PubMed ID: 18698450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and full characterization of molybdenum and antimony corroles and utilization of the latter complexes as very efficient catalysts for highly selective aerobic oxygenation reactions.
    Luobeznova I; Raizman M; Goldberg I; Gross Z
    Inorg Chem; 2006 Jan; 45(1):386-94. PubMed ID: 16390079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trifluoromethyl Hydrolysis En Route to Corroles with Increased Druglikeness.
    Yadav P; Khoury S; Fridman N; Sharma VK; Kumar A; Majdoub M; Kumar A; Diskin-Posner Y; Mahammed A; Gross Z
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12829-12834. PubMed ID: 33817919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xanthene-modified and hangman iron corroles.
    Schwalbe M; Dogutan DK; Stoian SA; Teets TS; Nocera DG
    Inorg Chem; 2011 Feb; 50(4):1368-77. PubMed ID: 21244031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic protocols for the nitration of corroles.
    Pomarico G; Fronczek FR; Nardis S; Smith KM; Paolesse R
    J Porphyr Phthalocyanines; 2011 Jul; 15(9-10):1085-1092. PubMed ID: 22287833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trifluoromethylation for affecting the structural, electronic and redox properties of cobalt corroles.
    Sudhakar K; Mahammed A; Fridman N; Gross Z
    Dalton Trans; 2019 Apr; 48(15):4798-4810. PubMed ID: 30912558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkyl and aryl substituted corroles. 3. Reactions of cofacial cobalt biscorroles and porphyrin-corroles with pyridine and carbon monoxide.
    Kadish KM; Ou Z; Shao J; Gros CP; Barbe JM; Jérôme F; Bolze F; Burdet F; Guilard R
    Inorg Chem; 2002 Jul; 41(15):3990-4005. PubMed ID: 12132926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Old Dog, New Tricks: Innocent, Five-coordinate Cyanocobalt Corroles.
    Osterloh WR; Desbois N; Quesneau V; Brandès S; Fleurat-Lessard P; Fang Y; Blondeau-Patissier V; Paolesse R; Gros CP; Kadish KM
    Inorg Chem; 2020 Jun; 59(12):8562-8579. PubMed ID: 32452674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cobalt(IV) corroles as catalysts for the electroreduction of O2: reactions of heterobimetallic dyads containing a face-to-face linked Fe(III) or Mn(III) porphyrin.
    Kadish KM; Frémond L; Burdet F; Barbe JM; Gros CP; Guilard R
    J Inorg Biochem; 2006 Apr; 100(4):858-68. PubMed ID: 16516296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substituent Effect on Ligand-Centered Electrocatalytic Hydrogen Evolution of Phosphorus Corroles.
    Yang G; Ullah Z; Yang W; Wook Kwon H; Liang ZX; Zhan X; Yuan GQ; Liu HY
    ChemSusChem; 2023 May; 16(10):e202300211. PubMed ID: 36815428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper corroles are inherently saddled.
    Alemayehu AB; Gonzalez E; Hansen LK; Ghosh A
    Inorg Chem; 2009 Aug; 48(16):7794-9. PubMed ID: 19618938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations.
    Ghosh A
    Chem Rev; 2017 Feb; 117(4):3798-3881. PubMed ID: 28191934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy-element-ligand covalence: ligand noninnocence in molybdenum and tungsten Viking-helmet Corroles.
    Vazquez-Lima H; Conradie J; Johansen MAL; Martinsen SR; Alemayehu AB; Ghosh A
    Dalton Trans; 2021 Sep; 50(37):12843-12849. PubMed ID: 34473174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aura of corroles.
    Aviv-Harel I; Gross Z
    Chemistry; 2009 Aug; 15(34):8382-8394. PubMed ID: 19630016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalt Corroles as Electrocatalysts for Water Oxidation: Strong Effect of Substituents on Catalytic Activity.
    Neuman NI; Albold U; Ferretti E; Chandra S; Steinhauer S; Rößner P; Meyer F; Doctorovich F; Vaillard SE; Sarkar B
    Inorg Chem; 2020 Nov; 59(22):16622-16634. PubMed ID: 33153263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoelectrochemical Cells Utilizing Tunable Corroles.
    Brennan BJ; Lam YC; Kim PM; Zhang X; Brudvig GW
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):16124-30. PubMed ID: 26135477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.