BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 34523973)

  • 1. Insights into the Lignocellulose-Degrading Enzyme System of
    Steindorff AS; Serra LA; Formighieri EF; de Faria FP; Poças-Fonseca MJ; de Almeida JRM
    Microbiol Spectr; 2021 Oct; 9(2):e0108821. PubMed ID: 34523973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon source and pH-dependent transcriptional regulation of cellulase genes of Humicola grisea var. thermoidea grown on sugarcane bagasse.
    Mello-de-Sousa TM; Silva-Pereira I; Poças-Fonseca MJ
    Enzyme Microb Technol; 2011 Jan; 48(1):19-26. PubMed ID: 22112766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and biochemical properties of a glucose-stimulated beta-D-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse.
    Nascimento CV; Souza FH; Masui DC; Leone FA; Peralta RM; Jorge JA; Furriel RP
    J Microbiol; 2010 Feb; 48(1):53-62. PubMed ID: 20221730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates.
    Häkkinen M; Arvas M; Oja M; Aro N; Penttilä M; Saloheimo M; Pakula TM
    Microb Cell Fact; 2012 Oct; 11():134. PubMed ID: 23035824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi.
    Mäkinen M; Kuuskeri J; Laine P; Smolander OP; Kovalchuk A; Zeng Z; Asiegbu FO; Paulin L; Auvinen P; Lundell T
    BMC Genomics; 2019 May; 20(1):430. PubMed ID: 31138126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a recombinant xylose tolerant β-xylosidase from Humicola grisea var. thermoidea and its use in sugarcane bagasse hydrolysis.
    Cintra LC; Fernandes AG; Oliveira ICM; Siqueira SJL; Costa IGO; Colussi F; Jesuíno RSA; Ulhoa CJ; Faria FP
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):262-271. PubMed ID: 28693992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An alkaline thermostable recombinant Humicola grisea var. thermoidea cellobiohydrolase presents bifunctional (endo/exoglucanase) activity on cellulosic substrates.
    Oliveira GS; Ulhoa CJ; Silveira MH; Andreaus J; Silva-Pereira I; Poças-Fonseca MJ; Faria FP
    World J Microbiol Biotechnol; 2013 Jan; 29(1):19-26. PubMed ID: 23054694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei.
    Borin GP; Sanchez CC; de Santana ES; Zanini GK; Dos Santos RAC; de Oliveira Pontes A; de Souza AT; Dal'Mas RMMTS; Riaño-Pachón DM; Goldman GH; Oliveira JVC
    BMC Genomics; 2017 Jun; 18(1):501. PubMed ID: 28666414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic responses of mixed cultures of ascomycete fungi to lignocellulose using dual RNA-seq reveal inter-species antagonism and limited beneficial effects on CAZyme expression.
    Daly P; van Munster JM; Kokolski M; Sang F; Blythe MJ; Malla S; Velasco de Castro Oliveira J; Goldman GH; Archer DB
    Fungal Genet Biol; 2017 May; 102():4-21. PubMed ID: 27150814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome and secretome analysis of Aspergillus fumigatus in the presence of sugarcane bagasse.
    de Gouvêa PF; Bernardi AV; Gerolamo LE; de Souza Santos E; Riaño-Pachón DM; Uyemura SA; Dinamarco TM
    BMC Genomics; 2018 Apr; 19(1):232. PubMed ID: 29614953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic and transcriptomic analysis of the thermophilic lignocellulose-degrading fungus Thielavia terrestris LPH172.
    Tõlgo M; Hüttner S; Rugbjerg P; Thuy NT; Thanh VN; Larsbrink J; Olsson L
    Biotechnol Biofuels; 2021 Jun; 14(1):131. PubMed ID: 34082802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic bleaching of organosolv sugarcane bagasse pulps with recombinant xylanase of the fungus Humicola grisea and with commercial Cartazyme HS xylanase.
    Moriya RY; Gonçalves AR; Faria FP
    Appl Biochem Biotechnol; 2005; 121-124():195-203. PubMed ID: 15917599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
    Zhao Z; Liu H; Wang C; Xu JR
    BMC Genomics; 2014 Jan; 15():6. PubMed ID: 24422981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial enrichment and meta-omics analysis identify CAZymes from mangrove sediments with unique properties.
    Paixão DAA; Tomazetto G; Sodré VR; Gonçalves TA; Uchima CA; Büchli F; Alvarez TM; Persinoti GF; da Silva MJ; Bragatto J; Liberato MV; Franco Cairo JPL; Leme AFP; Squina FM
    Enzyme Microb Technol; 2021 Aug; 148():109820. PubMed ID: 34116762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-dependent differential expression of Humicola grisea var. thermoidea cellobiohydrolase genes.
    Poças-Fonseca MJ; Silva-Pereira I; Rocha BB; Azevedo M de O
    Can J Microbiol; 2000 Aug; 46(8):749-52. PubMed ID: 10941523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures.
    Valadares F; Gonçalves TA; Damasio A; Milagres AM; Squina FM; Segato F; Ferraz A
    Enzyme Microb Technol; 2019 Nov; 130():109370. PubMed ID: 31421724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome-wide analysis of a superior xylan degrading isolate Penicillium oxalicum 5-18 revealed active lignocellulosic degrading genes.
    Hu S; Han P; Wang BT; Jin L; Ruan HH; Jin FJ
    Arch Microbiol; 2024 Jun; 206(7):327. PubMed ID: 38922442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression, crystal structure and cellulase activity of the thermostable cellobiohydrolase Cel7A from the fungus Humicola grisea var. thermoidea.
    Momeni MH; Goedegebuur F; Hansson H; Karkehabadi S; Askarieh G; Mitchinson C; Larenas EA; Ståhlberg J; Sandgren M
    Acta Crystallogr D Biol Crystallogr; 2014 Sep; 70(Pt 9):2356-66. PubMed ID: 25195749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secretomic insight into the biomass hydrolysis potential of the phytopathogenic fungus Chrysoporthe cubensis.
    Tavares MP; Morgan T; Gomes RF; Rodrigues MQRB; Castro-Borges W; de Rezende ST; de Oliveira Mendes TA; Guimarães VM
    J Proteomics; 2021 Mar; 236():104121. PubMed ID: 33540065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The boosting effect of recombinant hemicellulases on the enzymatic hydrolysis of steam-treated sugarcane bagasse.
    Cintra LC; da Costa IC; de Oliveira ICM; Fernandes AG; Faria SP; Jesuíno RSA; Ravanal MC; Eyzaguirre J; Ramos LP; de Faria FP; Ulhoa CJ
    Enzyme Microb Technol; 2020 Feb; 133():109447. PubMed ID: 31874680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.