These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34524283)

  • 21. The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFF(HBN) development.
    Han SS; Kang JK; Lee HM; van Duin AC; Goddard WA
    J Chem Phys; 2005 Sep; 123(11):114703. PubMed ID: 16392579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep Neural Message Passing With Hierarchical Layer Aggregation and Neighbor Normalization.
    Fan X; Gong M; Tang Z; Wu Y
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7172-7184. PubMed ID: 34106862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved Description of a Coordinate Bond in the ReaxFF Reactive Force Field.
    Pai SJ; Lee HW; Han SS
    J Phys Chem Lett; 2019 Nov; 10(22):7293-7299. PubMed ID: 31709800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Building attention and edge message passing neural networks for bioactivity and physical-chemical property prediction.
    Withnall M; Lindelöf E; Engkvist O; Chen H
    J Cheminform; 2020 Jan; 12(1):1. PubMed ID: 33430988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing ReaxFF for molecular dynamics simulations of lithium-ion batteries: an interactive reparameterization protocol.
    De Angelis P; Cappabianca R; Fasano M; Asinari P; Chiavazzo E
    Sci Rep; 2024 Jan; 14(1):978. PubMed ID: 38200063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a ReaxFF reactive force field for aqueous chloride and copper chloride.
    Rahaman O; van Duin AC; Bryantsev VS; Mueller JE; Solares SD; Goddard WA; Doren DJ
    J Phys Chem A; 2010 Mar; 114(10):3556-68. PubMed ID: 20180586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Benchmarking Accuracy and Generalizability of Four Graph Neural Networks Using Large In Vitro ADME Datasets from Different Chemical Spaces.
    Broccatelli F; Trager R; Reutlinger M; Karypis G; Li M
    Mol Inform; 2022 Aug; 41(8):e2100321. PubMed ID: 35156325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing Graph-based Deep Learning Models for Predicting Flash Point.
    Sun X; Krakauer NJ; Politowicz A; Chen WT; Li Q; Li Z; Shao X; Sunaryo A; Shen M; Wang J; Morgan D
    Mol Inform; 2020 Jun; 39(6):e1900101. PubMed ID: 32077235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface Structure and Stability of Partially Hydroxylated Silica Surfaces.
    Rimsza JM; Jones RE; Criscenti LJ
    Langmuir; 2017 Apr; 33(15):3882-3891. PubMed ID: 28375622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parameterization of a reactive force field using a Monte Carlo algorithm.
    Iype E; Hütter M; Jansen AP; Nedea SV; Rindt CC
    J Comput Chem; 2013 May; 34(13):1143-54. PubMed ID: 23420666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting Critical Properties and Acentric Factors of Fluids Using Multitask Machine Learning.
    Biswas S; Chung Y; Ramirez J; Wu H; Green WH
    J Chem Inf Model; 2023 Aug; 63(15):4574-4588. PubMed ID: 37487557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Half-Hop: A graph upsampling approach for slowing down message passing.
    Azabou M; Ganesh V; Thakoor S; Lin CH; Sathidevi L; Liu R; Valko M; Veličković P; Dyer EL
    Proc Mach Learn Res; 2023 Jul; 202():1341-1360. PubMed ID: 37810517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models.
    Jiang D; Wu Z; Hsieh CY; Chen G; Liao B; Wang Z; Shen C; Cao D; Wu J; Hou T
    J Cheminform; 2021 Feb; 13(1):12. PubMed ID: 33597034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of Reaction Yield for Buchwald-Hartwig Cross-coupling Reactions Using Deep Learning.
    Sato A; Miyao T; Funatsu K
    Mol Inform; 2022 Feb; 41(2):e2100156. PubMed ID: 34585854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a new parameter optimization scheme for a reactive force field based on a machine learning approach.
    Nakata H; Bai S
    J Comput Chem; 2019 Sep; 40(23):2000-2012. PubMed ID: 30973999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and application of a ReaxFF reactive force field for hydrogen combustion.
    Agrawalla S; van Duin AC
    J Phys Chem A; 2011 Feb; 115(6):960-72. PubMed ID: 21261320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Dynamics Simulation of Silicon Dioxide Etching by Hydrogen Fluoride Using the Reactive Force Field.
    Kim DH; Kwak SJ; Jeong JH; Yoo S; Nam SK; Kim Y; Lee WB
    ACS Omega; 2021 Jun; 6(24):16009-16015. PubMed ID: 34179646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proximity Graph Networks: Predicting Ligand Affinity with Message Passing Neural Networks.
    Gale-Day ZJ; Shub L; Chuang KV; Keiser MJ
    J Chem Inf Model; 2024 Jul; 64(14):5439-5450. PubMed ID: 38953560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals.
    Huang HS; Ai LQ; van Duin ACT; Chen M; Lü YJ
    J Chem Phys; 2019 Sep; 151(9):094503. PubMed ID: 31492056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of titanium metal/titanium dioxide etching with chlorine and hydrogen chloride gases using the ReaxFF reactive force field.
    Kim SY; van Duin AC
    J Phys Chem A; 2013 Jul; 117(27):5655-63. PubMed ID: 23750609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.