BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34524404)

  • 1. DeepMotifSyn: a deep learning approach to synthesize heterodimeric DNA motifs.
    Lin J; Huang L; Chen X; Zhang S; Wong KC
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34524404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterodimeric DNA motif synthesis and validations.
    Wong KC; Lin J; Li X; Lin Q; Liang C; Song YQ
    Nucleic Acids Res; 2019 Feb; 47(4):1628-1636. PubMed ID: 30590725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-dependent formation of transcription factor pairs alters their binding specificity.
    Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J
    Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework.
    Yang J; Ma A; Hoppe AD; Wang C; Li Y; Zhang C; Wang Y; Liu B; Ma Q
    Nucleic Acids Res; 2019 Sep; 47(15):7809-7824. PubMed ID: 31372637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells.
    Wong KC; Li Y; Peng C
    Bioinformatics; 2016 Feb; 32(3):321-4. PubMed ID: 26411866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular discovery of monomeric and dimeric transcription factor binding motifs for large data sets.
    Toivonen J; Kivioja T; Jolma A; Yin Y; Taipale J; Ukkonen E
    Nucleic Acids Res; 2018 May; 46(8):e44. PubMed ID: 29385521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A widespread role of the motif environment in transcription factor binding across diverse protein families.
    Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y
    Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic identification of non-canonical transcription factor motifs.
    Chumpitaz-Diaz L; Samee MAH; Pollard KS
    BMC Mol Cell Biol; 2021 Aug; 22(1):44. PubMed ID: 34465294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constrained transcription factor spacing is prevalent and important for transcriptional control of mouse blood cells.
    Ng FS; Schütte J; Ruau D; Diamanti E; Hannah R; Kinston SJ; Göttgens B
    Nucleic Acids Res; 2014 Dec; 42(22):13513-24. PubMed ID: 25428352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution transcription factor binding sites prediction improved performance and interpretability by deep learning method.
    Zhang Y; Wang Z; Zeng Y; Zhou J; Zou Q
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34272562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
    Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH
    Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Base-resolution models of transcription-factor binding reveal soft motif syntax.
    Avsec Ž; Weilert M; Shrikumar A; Krueger S; Alexandari A; Dalal K; Fropf R; McAnany C; Gagneur J; Kundaje A; Zeitlinger J
    Nat Genet; 2021 Mar; 53(3):354-366. PubMed ID: 33603233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin.
    Kshirsagar M; Yuan H; Ferres JL; Leslie C
    Genome Biol; 2022 Aug; 23(1):174. PubMed ID: 35971180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of deep learning approaches for modeling transcription factor sequence specificity.
    Zhang Y; Mo Q; Xue L; Luo J
    Genomics; 2021 Nov; 113(6):3774-3781. PubMed ID: 34534646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the interpretability of transcription factor binding site prediction using attention mechanism.
    Park S; Koh Y; Jeon H; Kim H; Yeo Y; Kang J
    Sci Rep; 2020 Aug; 10(1):13413. PubMed ID: 32770026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling binding specificities of transcription factor pairs with random forests.
    Antikainen AA; Heinonen M; Lähdesmäki H
    BMC Bioinformatics; 2022 Jun; 23(1):212. PubMed ID: 35659235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. abc4pwm: affinity based clustering for position weight matrices in applications of DNA sequence analysis.
    Ali O; Farooq A; Yang M; Jin VX; Bjørås M; Wang J
    BMC Bioinformatics; 2022 Mar; 23(1):83. PubMed ID: 35240993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors.
    Wang J; Zhuang J; Iyer S; Lin X; Whitfield TW; Greven MC; Pierce BG; Dong X; Kundaje A; Cheng Y; Rando OJ; Birney E; Myers RM; Noble WS; Snyder M; Weng Z
    Genome Res; 2012 Sep; 22(9):1798-812. PubMed ID: 22955990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.