BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34524404)

  • 21. Deep Learning of Sequence Patterns for CCCTC-Binding Factor-Mediated Chromatin Loop Formation.
    Kuang S; Wang L
    J Comput Biol; 2021 Feb; 28(2):133-145. PubMed ID: 33232622
    [No Abstract]   [Full Text] [Related]  

  • 22. A novel method to identify the DNA motifs recognized by a defined transcription factor.
    Ji X; Wang L; Nie X; He L; Zang D; Liu Y; Zhang B; Wang Y
    Plant Mol Biol; 2014 Nov; 86(4-5):367-80. PubMed ID: 25108460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of DNA-protein Interactions by Proximal Genetic Elements as Uncovered by Interpretable Deep Learning.
    Kalakoti Y; Peter SC; Gawande S; Sundar D
    J Mol Biol; 2023 Jul; 435(13):168121. PubMed ID: 37100167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A De Novo Shape Motif Discovery Algorithm Reveals Preferences of Transcription Factors for DNA Shape Beyond Sequence Motifs.
    Samee MAH; Bruneau BG; Pollard KS
    Cell Syst; 2019 Jan; 8(1):27-42.e6. PubMed ID: 30660610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uncovering cis-regulatory sequence requirements for context-specific transcription factor binding.
    Yáñez-Cuna JO; Dinh HQ; Kvon EZ; Shlyueva D; Stark A
    Genome Res; 2012 Oct; 22(10):2018-30. PubMed ID: 22534400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence-Specific Structural Features and Solvation Properties of Transcription Factor Binding DNA Motifs: Insights from Molecular Dynamics Simulation.
    Patra P; Gao YQ
    J Phys Chem B; 2022 Nov; 126(45):9187-9206. PubMed ID: 36322688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MotifHyades: expectation maximization for de novo DNA motif pair discovery on paired sequences.
    Wong KC
    Bioinformatics; 2017 Oct; 33(19):3028-3035. PubMed ID: 28633280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
    Quach B; Furey TS
    Bioinformatics; 2017 Apr; 33(7):956-963. PubMed ID: 27993786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development.
    Kazemian M; Pham H; Wolfe SA; Brodsky MH; Sinha S
    Nucleic Acids Res; 2013 Sep; 41(17):8237-52. PubMed ID: 23847101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML
    Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-Scale Capsule Network for Predicting DNA-Protein Binding Sites.
    Zhang Q; Yu W; Han K; Nandi AK; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1793-1800. PubMed ID: 32960766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finding de novo methylated DNA motifs.
    Ngo V; Wang M; Wang W
    Bioinformatics; 2019 Sep; 35(18):3287-3293. PubMed ID: 30726880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcription Factor-DNA Binding Motifs in Saccharomyces cerevisiae: Tools and Resources.
    Schipper JL; Gordân RM
    Cold Spring Harb Protoc; 2016 Nov; 2016(11):. PubMed ID: 27803259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Asymmetric Conservation within Pairs of Co-Occurred Motifs Mediates Weak Direct Binding of Transcription Factors in ChIP-Seq Data.
    Levitsky V; Oshchepkov D; Zemlyanskaya E; Merkulova T
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of Co-Associated Transcription Factors via Ordered Adjacency Differences on Motif Distribution.
    Pan G; Tang J; Guo F
    Sci Rep; 2017 Feb; 7():43597. PubMed ID: 28240320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.