BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 34524703)

  • 1. Liquid-liquid phase separation underpins the formation of replication factories in rotaviruses.
    Geiger F; Acker J; Papa G; Wang X; Arter WE; Saar KL; Erkamp NA; Qi R; Bravo JP; Strauss S; Krainer G; Burrone OR; Jungmann R; Knowles TP; Engelke H; Borodavka A
    EMBO J; 2021 Nov; 40(21):e107711. PubMed ID: 34524703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant Rotaviruses Rescued by Reverse Genetics Reveal the Role of NSP5 Hyperphosphorylation in the Assembly of Viral Factories.
    Papa G; Venditti L; Arnoldi F; Schraner EM; Potgieter C; Borodavka A; Eichwald C; Burrone OR
    J Virol; 2019 Dec; 94(1):. PubMed ID: 31619556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Genetically Engineered Rotavirus NSP2 Phosphorylation Mutant Impaired in Viroplasm Formation and Replication Shows an Early Interaction between vNSP2 and Cellular Lipid Droplets.
    Criglar JM; Crawford SE; Zhao B; Smith HG; Stossi F; Estes MK
    J Virol; 2020 Jul; 94(15):. PubMed ID: 32461314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viroplasms: Assembly and Functions of Rotavirus Replication Factories.
    Papa G; Borodavka A; Desselberger U
    Viruses; 2021 Jul; 13(7):. PubMed ID: 34372555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexibility of the Rotavirus NSP2 C-Terminal Region Supports Factory Formation via Liquid-Liquid Phase Separation.
    Nichols SL; Nilsson EM; Brown-Harding H; LaConte LEW; Acker J; Borodavka A; McDonald Esstman S
    J Virol; 2023 Feb; 97(2):e0003923. PubMed ID: 36749077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories.
    Criglar JM; Anish R; Hu L; Crawford SE; Sankaran B; Prasad BVV; Estes MK
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):E12015-E12023. PubMed ID: 30509975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel form of rotavirus NSP2 and phosphorylation-dependent NSP2-NSP5 interactions are associated with viroplasm assembly.
    Criglar JM; Hu L; Crawford SE; Hyser JM; Broughman JR; Prasad BV; Estes MK
    J Virol; 2014 Jan; 88(2):786-98. PubMed ID: 24198401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo.
    Fabbretti E; Afrikanova I; Vascotto F; Burrone OR
    J Gen Virol; 1999 Feb; 80 ( Pt 2)():333-339. PubMed ID: 10073692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation.
    Eichwald C; Rodriguez JF; Burrone OR
    J Gen Virol; 2004 Mar; 85(Pt 3):625-634. PubMed ID: 14993647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiazolides, a new class of antiviral agents effective against rotavirus infection, target viral morphogenesis, inhibiting viroplasm formation.
    La Frazia S; Ciucci A; Arnoldi F; Coira M; Gianferretti P; Angelini M; Belardo G; Burrone OR; Rossignol JF; Santoro MG
    J Virol; 2013 Oct; 87(20):11096-106. PubMed ID: 23926336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotaviruses associate with cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking lipid droplets inhibit viroplasm formation and viral replication.
    Cheung W; Gill M; Esposito A; Kaminski CF; Courousse N; Chwetzoff S; Trugnan G; Keshavan N; Lever A; Desselberger U
    J Virol; 2010 Jul; 84(13):6782-98. PubMed ID: 20335253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryoelectron microscopy structures of rotavirus NSP2-NSP5 and NSP2-RNA complexes: implications for genome replication.
    Jiang X; Jayaram H; Kumar M; Ludtke SJ; Estes MK; Prasad BV
    J Virol; 2006 Nov; 80(21):10829-35. PubMed ID: 16928740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles of RNA recruitment to viral ribonucleoprotein condensates in a segmented dsRNA virus.
    Strauss S; Acker J; Papa G; DesirĂ² D; Schueder F; Borodavka A; Jungmann R
    Elife; 2023 Jan; 12():. PubMed ID: 36700549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved Rotavirus NSP5 and VP2 Domains Interact and Affect Viroplasm.
    Buttafuoco A; Michaelsen K; Tobler K; Ackermann M; Fraefel C; Eichwald C
    J Virol; 2020 Mar; 94(7):. PubMed ID: 31915278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function analysis of rotavirus NSP2 octamer by using a novel complementation system.
    Taraporewala ZF; Jiang X; Vasquez-Del Carpio R; Jayaram H; Prasad BV; Patton JT
    J Virol; 2006 Aug; 80(16):7984-94. PubMed ID: 16873255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of Recombinant Rotavirus Expressing NSP3-UnaG Fusion Protein by a Simplified Reverse Genetics System.
    Philip AA; Perry JL; Eaton HE; Shmulevitz M; Hyser JM; Patton JT
    J Virol; 2019 Dec; 93(24):. PubMed ID: 31597761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotavirus NSP5 orchestrates recruitment of viroplasmic proteins.
    Contin R; Arnoldi F; Campagna M; Burrone OR
    J Gen Virol; 2010 Jul; 91(Pt 7):1782-93. PubMed ID: 20200190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Separate Heterologous Proteins from the Rotavirus NSP3 Genome Segment Using a Translational 2A Stop-Restart Element.
    Philip AA; Patton JT
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32611753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotavirus genome replication and morphogenesis: role of the viroplasm.
    Patton JT; Silvestri LS; Tortorici MA; Vasquez-Del Carpio R; Taraporewala ZF
    Curr Top Microbiol Immunol; 2006; 309():169-87. PubMed ID: 16909900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmid-based reverse genetics for probing phosphorylation-dependent viroplasm formation in rotaviruses.
    Criglar JM; Crawford SE; Estes MK
    Virus Res; 2021 Jan; 291():198193. PubMed ID: 33053412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.