BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 34525089)

  • 21. Neurocomputational models of working memory.
    Durstewitz D; Seamans JK; Sejnowski TJ
    Nat Neurosci; 2000 Nov; 3 Suppl():1184-91. PubMed ID: 11127836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mechanism for graded, dynamically routable current propagation in pulse-gated synfire chains and implications for information coding.
    Sornborger AT; Wang Z; Tao L
    J Comput Neurosci; 2015 Oct; 39(2):181-95. PubMed ID: 26227067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations.
    Brody CD; Romo R; Kepecs A
    Curr Opin Neurobiol; 2003 Apr; 13(2):204-11. PubMed ID: 12744975
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.
    Naudé J; Cessac B; Berry H; Delord B
    J Neurosci; 2013 Sep; 33(38):15032-43. PubMed ID: 24048833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational aspects of feedback in neural circuits.
    Maass W; Joshi P; Sontag ED
    PLoS Comput Biol; 2007 Jan; 3(1):e165. PubMed ID: 17238280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Working Memory Requires a Combination of Transient and Attractor-Dominated Dynamics to Process Unreliably Timed Inputs.
    Nachstedt T; Tetzlaff C
    Sci Rep; 2017 May; 7(1):2473. PubMed ID: 28559576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A working memory model based on fast Hebbian learning.
    Sandberg A; Tegnér J; Lansner A
    Network; 2003 Nov; 14(4):789-802. PubMed ID: 14653503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Persistent activity in neural networks with dynamic synapses.
    Barak O; Tsodyks M
    PLoS Comput Biol; 2007 Feb; 3(2):e35. PubMed ID: 17319739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering recurrent neural networks from task-relevant manifolds and dynamics.
    Pollock E; Jazayeri M
    PLoS Comput Biol; 2020 Aug; 16(8):e1008128. PubMed ID: 32785228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust computation with rhythmic spike patterns.
    Frady EP; Sommer FT
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):18050-18059. PubMed ID: 31431524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Online Learning and Memory of Neural Trajectory Replays for Prefrontal Persistent and Dynamic Representations in the Irregular Asynchronous State.
    Sarazin MXB; Victor J; Medernach D; Naudé J; Delord B
    Front Neural Circuits; 2021; 15():648538. PubMed ID: 34305535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resonance with subthreshold oscillatory drive organizes activity and optimizes learning in neural networks.
    Roach JP; Pidde A; Katz E; Wu J; Ognjanovski N; Aton SJ; Zochowski MR
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E3017-E3025. PubMed ID: 29545273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Balanced cortical microcircuitry for maintaining information in working memory.
    Lim S; Goldman MS
    Nat Neurosci; 2013 Sep; 16(9):1306-14. PubMed ID: 23955560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner.
    Liu JK; Buonomano DV
    J Neurosci; 2009 Oct; 29(42):13172-81. PubMed ID: 19846705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks.
    Renart A; Song P; Wang XJ
    Neuron; 2003 May; 38(3):473-85. PubMed ID: 12741993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robust Associative Learning Is Sufficient to Explain the Structural and Dynamical Properties of Local Cortical Circuits.
    Zhang D; Zhang C; Stepanyants A
    J Neurosci; 2019 Aug; 39(35):6888-6904. PubMed ID: 31270161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Attention and working memory: a dynamical model of neuronal activity in the prefrontal cortex.
    Deco G; Rolls ET
    Eur J Neurosci; 2003 Oct; 18(8):2374-90. PubMed ID: 14622200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Working Memory and Decision-Making in a Frontoparietal Circuit Model.
    Murray JD; Jaramillo J; Wang XJ
    J Neurosci; 2017 Dec; 37(50):12167-12186. PubMed ID: 29114071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A diverse range of factors affect the nature of neural representations underlying short-term memory.
    Orhan AE; Ma WJ
    Nat Neurosci; 2019 Feb; 22(2):275-283. PubMed ID: 30664767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Attractor dynamics in local neuronal networks.
    Thivierge JP; Comas R; Longtin A
    Front Neural Circuits; 2014; 8():22. PubMed ID: 24688457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.