BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34525375)

  • 1. SPYing on triplet repeat expansions: Insights into FAN1-MLH1 interaction and regulation.
    Lahue RS
    Cell Rep; 2021 Sep; 36(11):109736. PubMed ID: 34525375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington's disease.
    Goold R; Hamilton J; Menneteau T; Flower M; Bunting EL; Aldous SG; Porro A; Vicente JR; Allen ND; Wilkinson H; Bates GP; Sartori AA; Thalassinos K; Balmus G; Tabrizi SJ
    Cell Rep; 2021 Aug; 36(9):109649. PubMed ID: 34469738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FAN1-MLH1 interaction affects repair of DNA interstrand cross-links and slipped-CAG/CTG repeats.
    Porro A; Mohiuddin M; Zurfluh C; Spegg V; Dai J; Iehl F; Ropars V; Collotta G; Fishwick KM; Mozaffari NL; Guérois R; Jiricny J; Altmeyer M; Charbonnier JB; Pearson CE; Sartori AA
    Sci Adv; 2021 Jul; 7(31):. PubMed ID: 34330701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FAN1 exo- not endo-nuclease pausing on disease-associated slipped-DNA repeats: A mechanism of repeat instability.
    Deshmukh AL; Caron MC; Mohiuddin M; Lanni S; Panigrahi GB; Khan M; Engchuan W; Shum N; Faruqui A; Wang P; Yuen RKC; Nakamori M; Nakatani K; Masson JY; Pearson CE
    Cell Rep; 2021 Dec; 37(10):110078. PubMed ID: 34879276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FAN1 protects against repeat expansions in a Fragile X mouse model.
    Zhao XN; Usdin K
    DNA Repair (Amst); 2018 Sep; 69():1-5. PubMed ID: 29990673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders.
    Deshmukh AL; Porro A; Mohiuddin M; Lanni S; Panigrahi GB; Caron MC; Masson JY; Sartori AA; Pearson CE
    J Huntingtons Dis; 2021; 10(1):95-122. PubMed ID: 33579867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FAN1's protection against CGG repeat expansion requires its nuclease activity and is FANCD2-independent.
    Zhao X; Lu H; Usdin K
    Nucleic Acids Res; 2021 Nov; 49(20):11643-11652. PubMed ID: 34718701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FAN1 removes triplet repeat extrusions via a PCNA- and RFC-dependent mechanism.
    Phadte AS; Bhatia M; Ebert H; Abdullah H; Elrazaq EA; Komolov KE; Pluciennik A
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2302103120. PubMed ID: 37549289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promotion of somatic CAG repeat expansion by Fan1 knock-out in Huntington's disease knock-in mice is blocked by Mlh1 knock-out.
    Loupe JM; Pinto RM; Kim KH; Gillis T; Mysore JS; Andrew MA; Kovalenko M; Murtha R; Seong I; Gusella JF; Kwak S; Howland D; Lee R; Lee JM; Wheeler VC; MacDonald ME
    Hum Mol Genet; 2020 Nov; 29(18):3044-3053. PubMed ID: 32876667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MLH1-mediated recruitment of FAN1 to chromatin for the induction of apoptosis triggered by O
    Rikitake M; Fujikane R; Obayashi Y; Oka K; Ozaki M; Hidaka M
    Genes Cells; 2020 Mar; 25(3):175-186. PubMed ID: 31955481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FAN1 nuclease helps to delay Huntington disease.
    Wood H
    Nat Rev Neurol; 2022 Jun; 18(6):317. PubMed ID: 35534552
    [No Abstract]   [Full Text] [Related]  

  • 12. FANCD2-Associated Nuclease 1 Partially Compensates for the Lack of Exonuclease 1 in Mismatch Repair.
    Kratz K; Artola-Borán M; Kobayashi-Era S; Koh G; Oliveira G; Kobayashi S; Oliveira A; Zou X; Richter J; Tsuda M; Sasanuma H; Takeda S; Loizou JI; Sartori AA; Nik-Zainal S; Jiricny J
    Mol Cell Biol; 2021 Aug; 41(9):e0030321. PubMed ID: 34228493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exome sequencing of individuals with Huntington's disease implicates FAN1 nuclease activity in slowing CAG expansion and disease onset.
    McAllister B; Donaldson J; Binda CS; Powell S; Chughtai U; Edwards G; Stone J; Lobanov S; Elliston L; Schuhmacher LN; Rees E; Menzies G; Ciosi M; Maxwell A; Chao MJ; Hong EP; Lucente D; Wheeler V; Lee JM; MacDonald ME; Long JD; Aylward EH; Landwehrmeyer GB; Rosser AE; ; Paulsen JS; ; Williams NM; Gusella JF; Monckton DG; Allen ND; Holmans P; Jones L; Massey TH
    Nat Neurosci; 2022 Apr; 25(4):446-457. PubMed ID: 35379994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistent DNA damage underlies tubular cell polyploidization and progression to chronic kidney disease in kidneys deficient in the DNA repair protein FAN1.
    Airik M; Phua YL; Huynh AB; McCourt BT; Rush BM; Tan RJ; Vockley J; Murray SL; Dorman A; Conlon PJ; Airik R
    Kidney Int; 2022 Nov; 102(5):1042-1056. PubMed ID: 35931300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination.
    Ye Y; Kirkham-McCarthy L; Lahue RS
    DNA Repair (Amst); 2016 Jul; 43():1-8. PubMed ID: 27173583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Karyomegalic interstitial nephritis and DNA damage-induced polyploidy in Fan1 nuclease-defective knock-in mice.
    Lachaud C; Slean M; Marchesi F; Lock C; Odell E; Castor D; Toth R; Rouse J
    Genes Dev; 2016 Mar; 30(6):639-44. PubMed ID: 26980188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of homo-dimerization of Fanconi-associated nuclease 1 in DNA flap cleavage.
    Rao T; Longerich S; Zhao W; Aihara H; Sung P; Xiong Y
    DNA Repair (Amst); 2018 Apr; 64():53-58. PubMed ID: 29518739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and Functional Analyses Point to FAN1 as the Source of Multiple Huntington Disease Modifier Effects.
    Kim KH; Hong EP; Shin JW; Chao MJ; Loupe J; Gillis T; Mysore JS; Holmans P; Jones L; Orth M; Monckton DG; Long JD; Kwak S; Lee R; Gusella JF; MacDonald ME; Lee JM
    Am J Hum Genet; 2020 Jul; 107(1):96-110. PubMed ID: 32589923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human KIAA1018/FAN1 nuclease is a new mitotic substrate of APC/C(Cdh1).
    Lai F; Hu K; Wu Y; Tang J; Sang Y; Cao J; Kang T
    Chin J Cancer; 2012 Sep; 31(9):440-8. PubMed ID: 22854063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FANCD2-controlled chromatin access of the Fanconi-associated nuclease FAN1 is crucial for the recovery of stalled replication forks.
    Chaudhury I; Stroik DR; Sobeck A
    Mol Cell Biol; 2014 Nov; 34(21):3939-54. PubMed ID: 25135477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.