These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 34525545)

  • 1. Robust rhythmogenesis via spike-timing-dependent plasticity.
    Socolovsky G; Shamir M
    Phys Rev E; 2021 Aug; 104(2-1):024413. PubMed ID: 34525545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillations via Spike-Timing Dependent Plasticity in a Feed-Forward Model.
    Luz Y; Shamir M
    PLoS Comput Biol; 2016 Apr; 12(4):e1004878. PubMed ID: 27082118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhythmogenesis evolves as a consequence of long-term plasticity of inhibitory synapses.
    Soloduchin S; Shamir M
    Sci Rep; 2018 Aug; 8(1):13050. PubMed ID: 30158555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexing rhythmic information by spike timing dependent plasticity.
    Sherf N; Shamir M
    PLoS Comput Biol; 2020 Jun; 16(6):e1008000. PubMed ID: 32598350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does spike timing-dependent synaptic plasticity underlie memory formation?
    Letzkus JJ; Kampa BM; Stuart GJ
    Clin Exp Pharmacol Physiol; 2007 Oct; 34(10):1070-6. PubMed ID: 17714096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How adaptation shapes spike rate oscillations in recurrent neuronal networks.
    Augustin M; Ladenbauer J; Obermayer K
    Front Comput Neurosci; 2013; 7():9. PubMed ID: 23450654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity.
    Hiratani N; Fukai T
    J Neurosci; 2017 Dec; 37(50):12106-12122. PubMed ID: 29089443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of spontaneous rhythmic activity and organization of pacemakers as memory traces by spike-timing-dependent synaptic plasticity in a hippocampal model.
    Yoshida M; Hayashi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011910. PubMed ID: 14995650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic perturbation methods for spike-timing-dependent plasticity.
    Leen TK; Friel R
    Neural Comput; 2012 May; 24(5):1109-46. PubMed ID: 22295984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity.
    Cui Y; Paillé V; Xu H; Genet S; Delord B; Fino E; Berry H; Venance L
    J Physiol; 2015 Jul; 593(13):2833-49. PubMed ID: 25873197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network.
    Bush D; Philippides A; Husbands P; O'Shea M
    Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triphasic spike-timing-dependent plasticity organizes networks to produce robust sequences of neural activity.
    Waddington A; Appleby PA; De Kamps M; Cohen N
    Front Comput Neurosci; 2012; 6():88. PubMed ID: 23162457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic plasticity rules with physiological calcium levels.
    Inglebert Y; Aljadeff J; Brunel N; Debanne D
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33639-33648. PubMed ID: 33328274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABAA receptor-mediated feedforward and feedback inhibition differentially modulate hippocampal spike timing-dependent plasticity.
    Jang HJ; Kwag J
    Biochem Biophys Res Commun; 2012 Oct; 427(3):466-72. PubMed ID: 22940549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.
    Olde Scheper TV; Meredith RM; Mansvelder HD; van Pelt J; van Ooyen A
    Front Comput Neurosci; 2017; 11():119. PubMed ID: 29375358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level.
    Bono J; Clopath C
    Nat Commun; 2017 Sep; 8(1):706. PubMed ID: 28951585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike timing-dependent plasticity: a Hebbian learning rule.
    Caporale N; Dan Y
    Annu Rev Neurosci; 2008; 31():25-46. PubMed ID: 18275283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.