These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 34525574)
1. Microscopic edge-based compartmental modeling method for analyzing the susceptible-infected-recovered epidemic spreading on networks. Wu Q; Chen S Phys Rev E; 2021 Aug; 104(2-1):024306. PubMed ID: 34525574 [TBL] [Abstract][Full Text] [Related]
2. Comparison of theoretical approaches for epidemic processes with waning immunity in complex networks. Silva JCM; Silva DH; Rodrigues FA; Ferreira SC Phys Rev E; 2022 Sep; 106(3-1):034317. PubMed ID: 36266855 [TBL] [Abstract][Full Text] [Related]
3. Susceptible-infected-recovered epidemics in random networks with population awareness. Wu Q; Chen S Chaos; 2017 Oct; 27(10):103107. PubMed ID: 29092430 [TBL] [Abstract][Full Text] [Related]
4. Stochastic Compartment Model with Mortality and Its Application to Epidemic Spreading in Complex Networks. Granger T; Michelitsch TM; Bestehorn M; Riascos AP; Collet BA Entropy (Basel); 2024 Apr; 26(5):. PubMed ID: 38785610 [TBL] [Abstract][Full Text] [Related]
5. Impact of presymptomatic transmission on epidemic spreading in contact networks: A dynamic message-passing analysis. Li B; Saad D Phys Rev E; 2021 May; 103(5-1):052303. PubMed ID: 34134317 [TBL] [Abstract][Full Text] [Related]
6. Critical value in a SIR network model with heterogeneous infectiousness and susceptibility. Yan SX; Yuan SL Math Biosci Eng; 2020 Sep; 17(5):5802-5811. PubMed ID: 33120577 [TBL] [Abstract][Full Text] [Related]
7. Unification of theoretical approaches for epidemic spreading on complex networks. Wang W; Tang M; Eugene Stanley H; Braunstein LA Rep Prog Phys; 2017 Mar; 80(3):036603. PubMed ID: 28176679 [TBL] [Abstract][Full Text] [Related]
8. High prevalence regimes in the pair-quenched mean-field theory for the susceptible-infected-susceptible model on networks. Silva DH; Rodrigues FA; Ferreira SC Phys Rev E; 2020 Jul; 102(1-1):012313. PubMed ID: 32795004 [TBL] [Abstract][Full Text] [Related]
9. Edge-Based Compartmental Modelling of an SIR Epidemic on a Dual-Layer Static-Dynamic Multiplex Network with Tunable Clustering. Barnard RC; Kiss IZ; Berthouze L; Miller JC Bull Math Biol; 2018 Oct; 80(10):2698-2733. PubMed ID: 30136212 [TBL] [Abstract][Full Text] [Related]
10. Effect of local and global information on the dynamical interplay between awareness and epidemic transmission in multiplex networks. Zhang L; Guo C; Feng M Chaos; 2022 Aug; 32(8):083138. PubMed ID: 36049937 [TBL] [Abstract][Full Text] [Related]
11. Effective degree Markov-chain approach for discrete-time epidemic processes on uncorrelated networks. Cai CR; Wu ZX; Guan JY Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052803. PubMed ID: 25493830 [TBL] [Abstract][Full Text] [Related]
12. Edge-based epidemic spreading in degree-correlated complex networks. Wang Y; Ma J; Cao J; Li L J Theor Biol; 2018 Oct; 454():164-181. PubMed ID: 29885412 [TBL] [Abstract][Full Text] [Related]
13. Impact of contact rate on epidemic spreading in complex networks. Pei H; Yan G; Huang Y Eur Phys J B; 2023; 96(4):44. PubMed ID: 37041759 [TBL] [Abstract][Full Text] [Related]
14. The coupled dynamics of information dissemination and SEIR-based epidemic spreading in multiplex networks. Ma W; Zhang P; Zhao X; Xue L Physica A; 2022 Feb; 588():126558. PubMed ID: 34744294 [TBL] [Abstract][Full Text] [Related]
15. Predicting the epidemic threshold of the susceptible-infected-recovered model. Wang W; Liu QH; Zhong LF; Tang M; Gao H; Stanley HE Sci Rep; 2016 Apr; 6():24676. PubMed ID: 27091705 [TBL] [Abstract][Full Text] [Related]
16. The large graph limit of a stochastic epidemic model on a dynamic multilayer network. Jacobsen KA; Burch MG; Tien JH; RempaĆa GA J Biol Dyn; 2018 Dec; 12(1):746-788. PubMed ID: 30175687 [TBL] [Abstract][Full Text] [Related]
17. Social clustering in epidemic spread on coevolving networks. Lee HW; Malik N; Shi F; Mucha PJ Phys Rev E; 2019 Jun; 99(6-1):062301. PubMed ID: 31330685 [TBL] [Abstract][Full Text] [Related]
18. A Markovian random walk model of epidemic spreading. Bestehorn M; Riascos AP; Michelitsch TM; Collet BA Contin Mech Thermodyn; 2021; 33(4):1207-1221. PubMed ID: 34776647 [TBL] [Abstract][Full Text] [Related]
19. Epidemic spreading in weighted networks: an edge-based mean-field solution. Yang Z; Zhou T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056106. PubMed ID: 23004820 [TBL] [Abstract][Full Text] [Related]
20. Epidemic fronts in complex networks with metapopulation structure. Hindes J; Singh S; Myers CR; Schneider DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012809. PubMed ID: 23944520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]