These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 34525599)

  • 1. Interface thermal resistance induced by geometric shape mismatch: A multiparticle Lorentz gas model.
    Wang T; Yang Y; Wu Y; Xu L; Ma D; Zhang L
    Phys Rev E; 2021 Aug; 104(2-1):024801. PubMed ID: 34525599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal rectification induced by geometrical asymmetry: A two-dimensional multiparticle Lorentz gas model.
    Wang H; Yang Y; Chen H; Li N; Zhang L
    Phys Rev E; 2019 Jun; 99(6-1):062111. PubMed ID: 31330704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized interfacial thermal coupling between two nonlinear systems.
    Lu L; Xiong G; Huang Y; Ma D; Zhong M; Zhang L
    J Phys Condens Matter; 2020 May; 32(19):19LT02. PubMed ID: 31968327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems.
    Duan Z; Liu D; Zhang G; Li Q; Liu C; Fan S
    Nanoscale; 2017 Mar; 9(9):3133-3139. PubMed ID: 28218327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonmonotonic dependence of thermal conductivity on surface roughness: A multiparticle Lorentz gas model.
    Wang T; Tian S; Ma D; Zhang L
    Phys Rev E; 2023 Jul; 108(1-1):014125. PubMed ID: 37583191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing interfacial thermal resistance by interlayer.
    Ma D; Xing Y; Zhang L
    J Phys Condens Matter; 2022 Dec; 35(5):. PubMed ID: 36541482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Structure Effect of a Self-Assembled Monolayer on Thermal Resistance across an Interface.
    Song L; Zhang Y; Yang W; Tan J; Cheng L
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ballistic thermal rectification in asymmetric homojunctions.
    Wu Y; Yang Y; Lu L; Wang T; Xu L; Yu Z; Zhang L
    Phys Rev E; 2021 May; 103(5-1):052135. PubMed ID: 34134301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity and interfacial thermal resistance behavior for the polyaniline-boron carbide heterostructure.
    Mayelifartash A; Abdol MA; Sadeghzadeh S
    Phys Chem Chem Phys; 2021 Jun; 23(23):13310-13322. PubMed ID: 34095909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Interface Thermal Resistance between Polymer and Mold Insert in Micro-Injection Molding by Non-Equilibrium Molecular Dynamics.
    Weng C; Li J; Lai J; Liu J; Wang H
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33086641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Theoretical Review on Interfacial Thermal Transport at the Nanoscale.
    Zhang P; Yuan P; Jiang X; Zhai S; Zeng J; Xian Y; Qin H; Yang D
    Small; 2018 Jan; 14(2):. PubMed ID: 29226601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can Adhesion Energy Optimize Interface Thermal Resistance at a Soft/Hard Material Interface?
    Cheng X; He D; Zhou M; Zhang P; Wang S; Ren L; Sun R; Zeng X
    Nano Lett; 2023 Jul; 23(14):6673-6680. PubMed ID: 37428875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Kapitza resistance at fluid-solid interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    J Chem Phys; 2019 Nov; 151(19):194502. PubMed ID: 31757152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice-Templated MXene/Ag-Epoxy Nanocomposites as High-Performance Thermal Management Materials.
    Ji C; Wang Y; Ye Z; Tan L; Mao D; Zhao W; Zeng X; Yan C; Sun R; Kang DJ; Xu J; Wong CP
    ACS Appl Mater Interfaces; 2020 May; 12(21):24298-24307. PubMed ID: 32348118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface thermal resistance between dissimilar anharmonic lattices.
    Li B; Lan J; Wang L
    Phys Rev Lett; 2005 Sep; 95(10):104302. PubMed ID: 16196932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat transport through a solid-solid junction: the interface as an autonomous thermodynamic system.
    Rurali R; Colombo L; Cartoixà X; Wilhelmsen Ø; Trinh TT; Bedeaux D; Kjelstrup S
    Phys Chem Chem Phys; 2016 May; 18(20):13741-5. PubMed ID: 27148698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-carbon nitride interface-geometry effectson thermal rectification: A molecular dynamicssimulation.
    Farzadian O; Spitas C; Kostas K
    Nanotechnology; 2021 Feb; ():. PubMed ID: 33601345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection.
    Vo TQ; Barisik M; Kim B
    J Chem Phys; 2016 May; 144(19):194707. PubMed ID: 27208965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal Hall effect from a modified Lorentz gas model.
    Chen H; Yang Y; Yu Z; Zhong M; Zhang L
    Phys Rev E; 2020 Apr; 101(4-1):042129. PubMed ID: 32422723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.