BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34525599)

  • 1. Interface thermal resistance induced by geometric shape mismatch: A multiparticle Lorentz gas model.
    Wang T; Yang Y; Wu Y; Xu L; Ma D; Zhang L
    Phys Rev E; 2021 Aug; 104(2-1):024801. PubMed ID: 34525599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal rectification induced by geometrical asymmetry: A two-dimensional multiparticle Lorentz gas model.
    Wang H; Yang Y; Chen H; Li N; Zhang L
    Phys Rev E; 2019 Jun; 99(6-1):062111. PubMed ID: 31330704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized interfacial thermal coupling between two nonlinear systems.
    Lu L; Xiong G; Huang Y; Ma D; Zhong M; Zhang L
    J Phys Condens Matter; 2020 May; 32(19):19LT02. PubMed ID: 31968327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems.
    Duan Z; Liu D; Zhang G; Li Q; Liu C; Fan S
    Nanoscale; 2017 Mar; 9(9):3133-3139. PubMed ID: 28218327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonmonotonic dependence of thermal conductivity on surface roughness: A multiparticle Lorentz gas model.
    Wang T; Tian S; Ma D; Zhang L
    Phys Rev E; 2023 Jul; 108(1-1):014125. PubMed ID: 37583191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing interfacial thermal resistance by interlayer.
    Ma D; Xing Y; Zhang L
    J Phys Condens Matter; 2022 Dec; 35(5):. PubMed ID: 36541482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Structure Effect of a Self-Assembled Monolayer on Thermal Resistance across an Interface.
    Song L; Zhang Y; Yang W; Tan J; Cheng L
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ballistic thermal rectification in asymmetric homojunctions.
    Wu Y; Yang Y; Lu L; Wang T; Xu L; Yu Z; Zhang L
    Phys Rev E; 2021 May; 103(5-1):052135. PubMed ID: 34134301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity and interfacial thermal resistance behavior for the polyaniline-boron carbide heterostructure.
    Mayelifartash A; Abdol MA; Sadeghzadeh S
    Phys Chem Chem Phys; 2021 Jun; 23(23):13310-13322. PubMed ID: 34095909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Interface Thermal Resistance between Polymer and Mold Insert in Micro-Injection Molding by Non-Equilibrium Molecular Dynamics.
    Weng C; Li J; Lai J; Liu J; Wang H
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33086641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Theoretical Review on Interfacial Thermal Transport at the Nanoscale.
    Zhang P; Yuan P; Jiang X; Zhai S; Zeng J; Xian Y; Qin H; Yang D
    Small; 2018 Jan; 14(2):. PubMed ID: 29226601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can Adhesion Energy Optimize Interface Thermal Resistance at a Soft/Hard Material Interface?
    Cheng X; He D; Zhou M; Zhang P; Wang S; Ren L; Sun R; Zeng X
    Nano Lett; 2023 Jul; 23(14):6673-6680. PubMed ID: 37428875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Kapitza resistance at fluid-solid interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    J Chem Phys; 2019 Nov; 151(19):194502. PubMed ID: 31757152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice-Templated MXene/Ag-Epoxy Nanocomposites as High-Performance Thermal Management Materials.
    Ji C; Wang Y; Ye Z; Tan L; Mao D; Zhao W; Zeng X; Yan C; Sun R; Kang DJ; Xu J; Wong CP
    ACS Appl Mater Interfaces; 2020 May; 12(21):24298-24307. PubMed ID: 32348118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface thermal resistance between dissimilar anharmonic lattices.
    Li B; Lan J; Wang L
    Phys Rev Lett; 2005 Sep; 95(10):104302. PubMed ID: 16196932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat transport through a solid-solid junction: the interface as an autonomous thermodynamic system.
    Rurali R; Colombo L; Cartoixà X; Wilhelmsen Ø; Trinh TT; Bedeaux D; Kjelstrup S
    Phys Chem Chem Phys; 2016 May; 18(20):13741-5. PubMed ID: 27148698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-carbon nitride interface-geometry effectson thermal rectification: A molecular dynamicssimulation.
    Farzadian O; Spitas C; Kostas K
    Nanotechnology; 2021 Feb; ():. PubMed ID: 33601345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection.
    Vo TQ; Barisik M; Kim B
    J Chem Phys; 2016 May; 144(19):194707. PubMed ID: 27208965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal Hall effect from a modified Lorentz gas model.
    Chen H; Yang Y; Yu Z; Zhong M; Zhang L
    Phys Rev E; 2020 Apr; 101(4-1):042129. PubMed ID: 32422723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.