These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34525651)

  • 1. Nanofluidics of nematic liquid crystals in hollow capillaries.
    Śliwa I; Maslennikov PV; Zakharov AV
    Phys Rev E; 2021 Aug; 104(2-1):024702. PubMed ID: 34525651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically driven nematic flow in microfluidic devices containing a temperature gradient.
    Zakharov AV; Maslennikov PV; Pasechnik SV
    Phys Rev E; 2020 Jun; 101(6-1):062702. PubMed ID: 32688604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically driven nematic flow in microfluidic capillary with radial temperature gradient.
    Zakharov AV; Maslennikov PV; Pasechnik SV
    Phys Rev E; 2021 Jan; 103(1-1):012702. PubMed ID: 33601570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonmechanical principle for producing a flow in a homogeneously aligned microfluidic nematic channel.
    S Liwa I; Zakharov AV
    Eur Phys J E Soft Matter; 2020 May; 43(5):29. PubMed ID: 32447565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal and flexoelectric effects on nematodynamics in a microvolume cylindrical cavity.
    Zakharov AV; Vakulenko AA; Romano S
    J Chem Phys; 2010 Mar; 132(9):094901. PubMed ID: 20210410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of electric field and temperature gradient on the orientational dynamics of liquid crystals in a microvolume cylindrical cavity.
    Zakharov AV; Vakulenko AA; Romano S
    J Chem Phys; 2009 Oct; 131(16):164902. PubMed ID: 19894973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics of liquid crystals induced by laser radiation.
    S Liwa I; Maslennikov PV; Zakharov AV
    Phys Rev E; 2021 Jun; 103(6-1):062702. PubMed ID: 34271750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser-excited motion of liquid crystals confined in a microsized volume with a free surface.
    Zakharov AV; Maslennikov PV
    Phys Rev E; 2017 Nov; 96(5-1):052705. PubMed ID: 29347765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature of thermally excited vortical flow in a microsized nematic volume.
    Zakharov AV; Maslennikov PV
    Phys Rev E; 2019 Mar; 99(3-1):032701. PubMed ID: 30999456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-crystal pumping in a cylindrical capillary with radial temperature gradient.
    Zakharov AV; Vakulenko AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031708. PubMed ID: 19905132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic theory for nematic shells: The interplay among curvature, flow, and alignment.
    Napoli G; Vergori L
    Phys Rev E; 2016 Aug; 94(2-1):020701. PubMed ID: 27627231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrorheological response and orientational bistability of a homogeneously aligned nematic capillary.
    Reyes JA; Corella-Madueño A; Mendoza CI
    J Chem Phys; 2008 Aug; 129(8):084710. PubMed ID: 19044844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of shear flow on the Fréedericksz transition in nematic liquid crystals.
    Makarov DV; Zakhlevnykh AN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041710. PubMed ID: 17155081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientational dynamics of the compressible nematic liquid crystals induced by a temperature gradient.
    Zakharov AV; Vakulenko AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011708. PubMed ID: 19257053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonmechanical pumping principle in submicrosized devices.
    Zakharov AV; Vakulenko AA; Iwamoto M
    J Chem Phys; 2010 Jun; 132(22):224906. PubMed ID: 20550418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nematic director reorientation at solid and liquid interfaces under flow: SAXS studies in a microfluidic device.
    Silva BF; Zepeda-Rosales M; Venkateswaran N; Fletcher BJ; Carter LG; Matsui T; Weiss TM; Han J; Li Y; Olsson U; Safinya CR
    Langmuir; 2015 Apr; 31(14):4361-71. PubMed ID: 25396748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical properties of nematic liquid crystals subjected to shear flow and magnetic fields: tumbling instability and nonequilibrium fluctuations.
    Fatriansyah JF; Orihara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012510. PubMed ID: 23944477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically driven kinklike distorting waves in microsized liquid crystals.
    Kharlamov SS; Shmeliova DV; Pasechnik SV; Maslennikov PV; Zakharov AV
    Phys Rev E; 2023 Sep; 108(3-1):034703. PubMed ID: 37849103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects.
    Poddar A; Dhar J; Chakraborty S
    Phys Rev E; 2017 Jul; 96(1-1):013114. PubMed ID: 29347259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poisson bracket approach to the dynamics of nematic liquid crystals: the role of spin angular momentum.
    Stark H; Lubensky TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051714. PubMed ID: 16383627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.